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• Top-down and deductive: precise models 
from problem description. 

• E.g., 

• SATisfiability (SAT) solvers 

• Satisfiability Module Theory (SMT) solver 

• Mixed Integer Programming (MIP) solver
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• Hallucination: generated outputs are false 
or fabricated. 

• May violate constraints in rare and unseen 
situations.
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• Challenging in providing formal 
guarantees. 

• Hallucination: generated outputs are false 
or fabricated. 

• May violate constraints in rare and unseen 
situations.

• Rigid models: problem formulation 
must be agreed a-priori. 

• Difficult to adapt to evolving data 
distributions. 

• Cannot understand data like text and 
images.

Machine Learning Automated Reasoning
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Feasible variable assignment

Input (x1 ∨ x2) ∧ (¬x1 ∨ x3)

SATisfiability Solvers

• hard to encode data distribution.

• hard to handle complex input data, 
like language and image
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Machine Learning

A class of Structured prediction problems are beyond the reach of machine learning 
and automated reasoning, when they are applied in isolation.

Automated Reasoning

Feasible outputLearn data distribution

Encode evolving data distributionProvide formal guarantees
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The benefits are: 

• Formal guarantee of constraint 
satisfaction.

Machine Learning 
Models

Automated Reasoning 
Solvers• Scalability: Accelerate learning for 

higher-dimensional data.

Integration

Key insight: Embed reasoning solvers as 
differentiable modules into neural 
networks.

Input data
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Automated Reasoning 
Solvers

Feasible output y

• Satisfy the constraints

Input x

Machine Learning 
Models• Learn from data

• Differentiable
The gradient of loss w.r.t the parameters 

Extra steps

Extra steps
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Integrate reasoning with learning to 
ensure constraint satisfaction for 
structured prediction

•For route planning,  
•Our method generates 100% valid routes,  
•Pure ML baselines (i.e., Transformer) produce <1% valid 
routes.

Input Input
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Integrate reasoning with learning to accelerate scientific discovery

• A series of conference publications: ECML2023, AAAI2024, IJCAI2024, AAAI2025.

Experimental Data

Best expression is .x1 × x2 − x3/x4

0.2 0.4 0.2 0.7 -0.24
0.9 0.3 0.5 0.5 0.30
0.5 0.4 0.8 0.1 0.36
0.1 0.8 0.7 0.6 -0.41

 x1  x2  x3  y x4

•Task: Learning physical knowledge in closed-
form from data.
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Integrate reasoning with learning to accelerate scientific discovery

•Our method discovers scientific equations involving 50 variables.
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Design principle of the integrated system:  
For CNF-SAT logical constraints satisfying “extreme conditions”
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Input x1, …, xn

Markov Random Fields• Learn from data

• Differentiable
Back-propagate the gradient

Sampling through Lovasz 
Local Lemma Theory

• Satisfy CNF-SAT 
logical constraints

Feasible output y

Nan Jiang et al., Learning Markov Random Fields for Combinatorial Structures via Sampling through Lovász Local Lemma. AAAI, 2023.
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these events are mostly independent from one another and are not too likely individually.
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• In 2010, Moser and Tardos proposed Algorithmic-LLL: 

which is an randomized algorithm to find solutions without breaking any bad events

• In 2019 (JACM), Heng Guo, Mark Jerrum et al.: 

The probability distribution of Algorithmic-LLL and the necessary condition 

Heng Guo and Mark Jerrum and Jingcheng Liu. Uniform Sampling Through the Lovasz Local Lemma. In Journal of ACM, 2019.

Background on Lovasz Local Lemma
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1 0 0
Sample  from  Xi P(Xi)

X1 X2 X3

Inputs:  Discrete variables , with . 
Marginal distribution: ;


Constraints: 


Output: A valid sample from distribution .


X = [X1, X2, X3] Xi ∈ {0,1}
P(X1), P(X2), P(X3)

C =
c1

(x1 ∨ x2) ∧
c2

(¬x1 ∨ x3)

3

∏
i=1

P(xi |C)
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1 0 0
 is violated c2

X1 X2 X3

Inputs:  Discrete variables , with . 
Marginal distribution: ;


Constraints: 


Output: A valid sample from distribution .


X = [X1, X2, X3] Xi ∈ {0,1}
P(X1), P(X2), P(X3)

C =
c1

(x1 ∨ x2) ∧
c2

(¬x1 ∨ x3)
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∏
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1 0 0
0 0 1

Resample  from  X1, X3 P(X1), P(X3)

X1 X2 X3

Inputs:  Discrete variables , with . 
Marginal distribution: ;


Constraints: 


Output: A valid sample from distribution .


X = [X1, X2, X3] Xi ∈ {0,1}
P(X1), P(X2), P(X3)

C =
c1

(x1 ∨ x2) ∧
c2

(¬x1 ∨ x3)

3

∏
i=1

P(xi |C)
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1 0 0
0 0 1

 is violated c1

X1 X2 X3

Inputs:  Discrete variables , with . 
Marginal distribution: ;


Constraints: 


Output: A valid sample from distribution .


X = [X1, X2, X3] Xi ∈ {0,1}
P(X1), P(X2), P(X3)

C =
c1

(x1 ∨ x2) ∧
c2

(¬x1 ∨ x3)

3

∏
i=1

P(xi |C)
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0 1 1
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X1 X2 X3

Inputs:  Discrete variables , with . 
Marginal distribution: ;


Constraints: 


Output: A valid sample from distribution .
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1 0 0
0 0 1
0 1 1All constraints are satisfied!

X1 X2 X3

Inputs:  Discrete variables , with . 
Marginal distribution: ;


Constraints: 


Output: A valid sample from distribution .


X = [X1, X2, X3] Xi ∈ {0,1}
P(X1), P(X2), P(X3)

C =
c1

(x1 ∨ x2) ∧
c2

(¬x1 ∨ x3)

3

∏
i=1

P(xi |C)

1. Transform into 
matrix computation.  
2. embed into neural 
network.



Implemented as a series of matrix 
computations
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Our Nelson draw samples faster than 
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Our Nelson always sample feasible 
output from the model.

Task: sample feasible output from the model.

Experiments: Our Nelson draw samples faster than baselines with constraint satisfaction

UniGen: https://github.com/meelgroup/unigen
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The benefits are: 

• Formal guarantee on Constraint 
satisfaction.

Machine Learning 
Models

Automated Reasoning 
Solvers

• Scalablilty: Accelerate learning for 
higher-dimensional data.

Integration

feasible output

Takeaway
Input
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