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Bottom-up and Inductive: Fit data . Top-down and deductive: precise models
distributions well. from problem description.
. E.qQ,  E.Q,
. Perceptron . SATisfiability (SAT) solvers
. Support vector machine . Satisfiability Module Theory (SMT) solver
« Generative model . Mixed Integer Programming (MIP) solver
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Two Pillars in Al: Machine Learning and Automated Reasoning
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Machine Learning

« Challenging in providing formal + Rigid models: problem formulation
guarantees. must be agreed a-priori.

» Hallucination: generated outputs are false  « Difficult to adapt to evolving datao
or fabricated. distributions.

« May violate constraints in rare and unseen « Cannot understand data like text and
situations. Images.
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Machine Learning has intrinsic difficulty

q Mike's mum had 4 kids: 3 of them are
Luis, Drake and Matilda. What is the name
of 4th kid?

ChatGPT struggle with questions
in logical reasoning and context
comprehension.

pssible to determine the

he fourth child without

r FINANCIAL TIMES
Yann LeCun, chief Al scientist at the social media giant that owns Facebook

and Instagram, said LLMs had “very limited understanding of logic. .. do not
understand the physical world, do not have persistent memory, cannot reason

in any reasonable definition of the term and cannot plan. .. hierarchically”.

not possible to determine the name
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Automated Reasoning has intrinsic difficulties

IhpUt (xl V X2) AN (—le V X3)

!

ﬂ SATisfiability Solvers |

|
|

« hard to encode data distribution.

@ . hard to handle complex input datq,
like language and image

Feasible variable assignment
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Bridging Machine Learning and Automated Reasoning is Crucial!

Machine Learning Automated Reasoning
9 Learn data distribution Feasible output
Q Provide formal guarantees Encode evolving data distribution
A class of problems are beyond the reach of machine learning

and automated reasoning, when they are
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My Research: Integrate Learning with Reasoning

. : Input data
Key insight: Embed reasoning solvers as — P — — —
differentiable modules into neural T
networks. | ‘ Machine Learning
Models
The benefits are: |

. Formal guarantee of constraint
satisfaction.

Automated Reasoning

feasible output

« Scalablility: Accelerate learning for
higher-dimensional data.
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Input X

eSS

Machine Learning

« Learn from data :
Models i

» Satisfy the constraints Automated Reasoning |

Solvers

Feasible outputy | £+ steps

. Differentiable
The gradient of loss w.r.t the parameters



Integrate reasoning with learning to
ensure constraint satisfaction for

structured prediction Neural Neural
Network Network

Input Input

e A series of conference publications: EMNLP2020, UAI2021, JMLR2022, AAAI2023, [JCAI2024.
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Integrate reasoning with learning to
ensure constraint satisfaction for

structured prediction Neura| Neura|
Network Network
. . | Enforce constraints via
e For route planning,

Input Input

pruned tree search

 Our method generates

e Pure ML baselines (i.e., Transformer) produce

e A series of conference publications: EMNLP2020, UAI2021, JMLR2022, AAAI2023, IJCAI2024.



Integrate reasoning with learning to accelerate scientific discovery

e Task: Learning physical knowledge in closed- Experimental Data

form from data.
i I R & W y

0.2 04 02 0.7 -0.24
09 03 05 05 0.30

05 04 08 0.1 0.36
01 08 0.7 0.6 -0.41

Best expression is x; X X, — x3/x,.

e A series of conference publications: ECML2023, AAAI2024, [JCAI2024, AAAI2025.
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Integrate reasoning with learning to accelerate scientific discovery

e Task: Learning physical knowledge in closed- Experimental Data
form from data. X| X Xy X y
0.2 04 0.2 0.7 -024
e Gap: Pure MLs struggle with 09 0.3 05 05 0.30
setting, because the search space grows 05 04 08 0.1 0.36
exponentially. 0.1 08 0.7 06 -041

e Our Solution:

« Combine ML with scientific approach-inspired reasoning.

 Qur method discovers scientific equations involving

e A series of conference publications: ECML2023, AAAI2024, [JCAI2024, AAAI2025.
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Design principle of the integrated system:
For CNF-SAT logical constraints satisfying “extreme conditions’

Input x;, ..., x

« Learn from data

for CNF-SAT Logical

constraint, i.e.,
€ &)

Sampling through Lovasz :
Local Lemma Theory |

» Satisfy CNF-SAT
logical constraints

w

* l - C= (xl V xzj A r(—lxlAv x35

Feasible output y

. Differentiable ,
Back-propagate the gradient

Nan Jiang et al., Learning Markov Random Fields for Combinatorial Structures via Sampling through Lovasz Local Lemma. AAAI, 2023. 11
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Heng Guo and Mark Jerrum and Jingcheng Liu. Uniform Sampling Through the Lovasz Local Lemma. In Journal of ACM, 2019.
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which is an randomized algorithm to find solutions without breaking any bad events

—

The Godel Prize 2020 - Laudation

The 2020 Godel Prize is awarded to Robin A. Moser and Gabor Tardos for their algorithmic version of the Lovasz
Local Lemma in the paper:

“A constructive proof of the general Lovasz Local Lemma," Journal of the ACM 57(2): 11:1-11:15 (2010).

. In 2019 (JACM), Heng Guo, Mark Jerrum et al.:
The probability distribution of Algorithmic-LLL and the necessary condition
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Sampling through Lovasz Local Lemma

Discrete variables X = [X;, X5, X;3], with X € {0,1}.
Marginal distribution: P(X,), P(X5), P(X3);

C1 )

Constraints: C = ,(x1 V xzj A r(—lxl \4 ng

A valid sample from distribution

Sample X; from P(X,)=—»
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Discrete variables X = [X;, X5, X;3], with X € {0,1}.
Marginal distribution: P(X,), P(X5), P(X3);
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Sampling through Lovasz Local Lemma

Discrete variables X = [X;, X5, X;3], with X € {0,1}.
Marginal distribution: P(X,), P(X5), P(X3);

C1 )

Constraints: C = le V xzj A r(—lxl \4 ng

A valid sample from distribution

Xl X2 X3

1 0 0

|0 0 1

Resample X, X, from P(X), P(X,) =¥ 0 1 1




Sampling through Lovasz Local Lemma

Inputs: Discrete variables X = [ X, X,, X;], with X, € {0,1}.
Marginal distribution: P(X,), P(X5), P(X3);

C1 )

Constraints: C = ,(x1 V xzj A r(_|x1 \4 ng

3
Output: A valid sample from distribution HP(xl-\ ).
i=1

X X5 X3

1 0 0

0 0 1
All constraints are satisfied! ... g, 0 1 1

18



Sampllng through Lovasz LOCCI| Lemma

/

Inputs Discrete varlablesX = [Xl,Xz,X3] with X S {() 1}

Marginal distribution: P(X,), P(X5), P(X3);

Constraints:

C1

)

All constraints are satisfied! ___za.

C — r(xl VX25Ar(ﬂX1 VX35

=1

1' “'//

1. Transform into
matrix computation.
2. embed into neural
network.

J/

1 0 0
0 0 1
0 1 1

18



Implementing Sampling through Lovasz Local Lemma as several
Fully Differentiable Neural Network Layers

Input:

Discrete variables X;, X, X, 1. Initialize

with X, € {0,1}. x; = 1[u; > P(X;)]
Marginal distributions 2. Extract violated constraints
P(X;),P(X;), P(X3). Z=WQx+b

Constraints

S5i=1— max Z

1<k=<K

C=c1Acy, 3. Variables to be resamples Implemented as a series of matrix
c1 = X1 VX, ; computations
Cz —_ _IX1 VX3
A =1 ZS-'V-- > 1
W_[[1 0 0] [0 1 0] l L iVt
=1 0 0] [0 0 1] J=1
4. Resample variables
, [0 0 x=(0—-A)*x+A=*1[u; > P(X;)]
1 0

110

V'[1 0 1

Fully Differentiable




Experiments: Our Nelson draw samples faster than baselines with constraint satisfaction

_ Task: sample feasible output from the model.
—8— Nelson (ours)
2 10° =4+ CMSGen
<>
£ QuickSampler
:o UniGen
= —k— KUS
- e A *
- 101 E A amw kA -k — - —
m =T AL A=A "A" —d==A 4
B A=A
.
o
2,
= o—0—0—"
- 0—-:’"“
100 E "‘—‘/

10.0 12.5 15.0 17.5 20.0
Problem size of Random K-SAT

UniGen: https://github.com/meelgroup/unigen KUS sampler: https://qgithub.com/meelgroup/KUS
CMSGen: https://github.com/meelgroup/cmsgen QuickSampler: https://github.com/RafaelTupynamba/quicksampler/ 20
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Experiments: Our Nelson draw samples faster than baselines with constraint satisfaction

_ Task: sample feasible output from the model.
—8— Nelson (ours)
2 10 —aA=: CMSGen
>
£ QuickSampler
:o UniGen
= —k= KUS
= 10! - Our Nelson draw samples faster than
r | e | existing methods.
Tg A —h " '
=
=
- 0
1004

10.0 12.5 15.0 17.5 20.0
Problem size of Random K-SAT
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Experiments: Our Nelson draw samples faster than baselines with constraint satisfaction

100% | rmmmmremrimsy tsrns smmmmnmmrmsmnnensns | 1ASK: SAMple feasible output from the model.
S 80%-
5
= 60% -
C
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L 40% 7 _—_a.
< k- CMSGen
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= QuickSamplet
>  20% - .
UniGen
== KUS
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101 107 10°
Problem size of Random K-SAT
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Experiments: Our Nelson draw samples faster than baselines with constraint satisfaction

100% ] smmmmiimse -,/-__-“? Task: sample feasible output from the model.

S 80%-
5
= 60% -
gb —®— Nelson (outs)
< 40%7 —a. CMSGen Our Nelson always sample feasible
% QuickSamplek output from the model.
> 20%- UniGen

—k=— KUS

0% -
0t 102 10°
Problem size of Random K-SAT
UniGen: https://github.com/meelgroup/unigen KUS sampler: https://qgithub.com/meelgroup/KUS

CMSGen: https://github.com/meelgroup/cmsgen QuickSampler: https://github.com/RafaelTupynamba/quicksampler/ 21
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Experiment: Our Nelson estimates the gradient more accurately

Problem (a) Training Time Per Epoch (Mins) ({)
size | NELSON XOR WAPS WeightGen CMSGen KUS QuickSampler Unigen  Gibbs
10 0.13 26.30 1.75 0.64 0.22 0.72 0.40 0.66 0.86
20 0.15 134.50 3.04 T.O. 0.26 0.90 0.30 2.12 1.72
30 0.19 1102.95 6.62 T.O. 0.28 2.24 0.32 4.72 2.77
40 0.23 T.O. 33.70 T.O. 0.31 19.77 0.39 9.38 3.93
50 0.24 T.O0. 909.18 T.O. 0.33 1532.22 0.37 13.29 5.27
500 35.99 T.O. T.O. T.O. 34.17 T.O. T.O. T.0. 221.83
1000 34.01 T.O. T.O. T.O. 177.39 T.O. T.O. T.0. 854.59
(b) Validness of CNF Assignments (%) (1)
10 — 50 100 100 100 100 100 100 82.65 100 90.58
500 100 T.O. T.O. T.O. 100 T.O. 7.42 100 54.27
1000 100 T.O. T.O. T.O. 100 T.O. 0.00 100 3391
(c) Approximation Error of Gradient ({)
10 0.10 0.21 0.12 3.58 3.96 4.08 3.93 4.16 0.69
12 0.14 0.19 0.16 5.58 5.50 5.49 5.55 5.48 0.75
14 0.15 0.25 0.19 T.O. 6.55 6.24 7.79 6.34 1.30
16 0.16 0.25 0.15 T.O. 9.08 9.05 9.35 9.03 1.67
18 0.18 0.30 0.23 T.O. 10.44 10.30 11.73 10.20 1.90

22
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10 0.21 0.12 3.58 3.96 4.08 3.93 4.16 0.69
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Our Nelson estimates the gradient more accurately
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Takeaway

Machine Learning
Models

The benefits are:

r ,
|
|

« Formal guarantee on Constraint
satisfaction. |ntegrqtion +

« Scalablilty: Accelerate learning for
higher-dimensional data.

Automated Reasoning

Solvers

r — —

feasible output
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