PALM: Probabilistic Area Loss Minimization for Protein Sequence Alignment

^aThese authors contribute equally.

Pairwise Protein Sequence Alignment

• Learning. Given a training set of $\{(S^{(k)}, T^{(k)}, a^{*(k)})\}_{k=1}^N$, where $S^{(k)}, T^{(k)}$ is a pair of sequences, and $a^{*(k)}$ is the ground-truth alignment between the two sequences. We want to learn:

$$\max_{\theta} \prod_{k=1}^{N} Pr_{\theta} \left(a^{*(k)} | S^{(k)}, T^{(k)} \right).$$

• θ is the model's parameter;

- $Pr_{\theta}(a|S,T)$ is the probability of alignment a.
- Inference. After training, we use the model $Pr_{\theta}(a|S,T)$ to find the best alignment between two new sequences by:

$$\hat{a} = \arg\max_{a \in \mathcal{A}} Pr(a|S,T)$$

 \hat{a} is the predicted alignment.

Our Motivation

- Biology datasets contain notable errors from the real experiments.
- Existing approaches are not robust to the noises in the dataset. Because they lead to the minimization of the pointwise differences of the two alignments.
- We consider the area of two alignments, which is **robust to errors and offsets of** alignments.

Example

- The missed predictions of the green alignment is result of biological measurement noises, while the orange alignment completely misses the ground-truth.
- The area distance between the ground-truth (blue line) and the first predicted alignment (green line) is 1.5, and is 4.5 between the ground-truth and the second one (orange line).

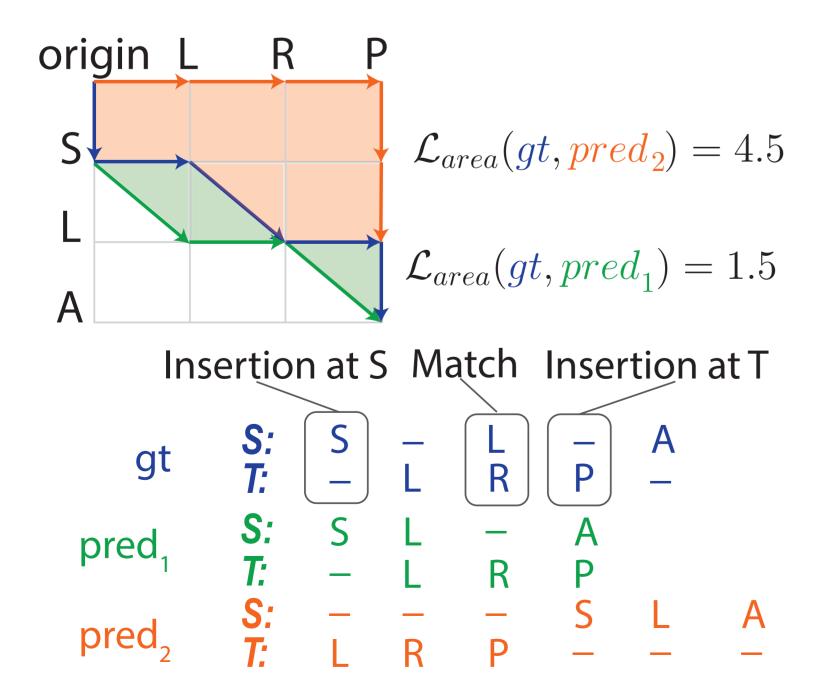


Figure 1. Given a pair of sequence (S, T), we can formulate an alignment matrix of shape (|S|, |T|). Symbols M, I_S and I_T : represent a match, an insertion in S, and an insertion in T, respectively. Alignment a: a sequential symbols M, I_S and I_T .

37th Conference on Uncertainty in Artificial Intelligence

Fan Ding^{1,a}, Nan Jiang^{1,a}, Jianzhu Ma², Jian Peng³, Jinbo Xu⁴, Yexiang Xue¹

¹Purdue University

(1)

(2)

²Peking University ³University of Illinois at Urbana-Champaign ⁴Toyota Technological Institute at Chicago

We define the area distance as:

 $Pr_{area}(a^*|a, S, T) = \frac{e^{-\lambda \mathcal{L}_{ar}}}{Z}$ where the predicted alignment a that is similar to the observed one a^* has higher probability. It penalizes those predicted alignment that is far away from the observed alignment.

We maximize the likelihood of the observed alignment:

$$Pr(a^*|S,T) = \sum_a Pr_{area}(a^*|a,S,$$

which sums over the latent variable a.

Lower bound on $Pr_{\theta}(a^*|S,T)$

The objective needs to sum over all possible alignments, which is computationally intractable.

$$\log Pr(a^*|S,T) = \mathcal{L} = \log \sum_{a} \frac{e^{-\lambda \mathcal{L}_{area}(a^*,a)}}{Z_{area}} \frac{e^{\sum_{k=1}^{|a|} \phi_{\theta}(\pi_S(a,k),\pi_T(a,k),a_k)}}{Z_{\phi}}$$

So we use the lower bound \mathcal{L}_{LB} as **learning objective**, based on the the principle of log-sum-exp function:

$$\mathcal{L}_{LB} = \max_{a} \{ \sum_{k=1}^{|a|} \phi_{\theta}(\pi_{S}(a,k), \pi_{T}(a,k), a_{k}) - \lambda \mathcal{L}_{area}(a^{*},a) \} - \log Z_{area} - \log Z_{\phi}$$
(5)

Gradient Estimation for \mathcal{L}_{LB}

The gradient is computed as:

$$\nabla \mathcal{L}_{LB} = \sum_{k=1}^{|\hat{a}|} \nabla \phi_{\theta}(\pi_S(\hat{a}, k), \pi_T(\hat{a}, k), \hat{a}_k) - \nabla \log Z_{\phi}$$
(6)

- $\nabla \phi_{\theta}(\pi_S(\hat{a},k),\pi_T(\hat{a},k),\hat{a}_k)$ is the gradient of function ϕ_{θ} .
- $\nabla \log Z_{\phi}$ is formulated as an expectation over P(a|S,T) by contrastive divergence [1]:

$$\nabla \log Z_{\phi} \approx \frac{1}{M} \sum_{a^m \sim Pr_{\theta}(a|S,T)} \left[\sum_{k'=1}^{|a^m|} \nabla \phi_{\theta}(\pi_S(a^m,k'),\pi_T(a^m,k'),a_{k'}^m) \right]$$
(7)

We can approximate $\nabla \log Z_{\phi}$ by:

- sampling M paths from $Pr_{\theta}(a|S,T)$
- 2. sum the gradients $\nabla \phi_{\theta}$ of all sampled path $\{a^m\}_{m=1}^M$.

Remark

The whole optimization process of each iteration is $\mathcal{O}(|S||T| + (|S| + |T|)M)$.

- computing gradient via dynamic sampling is $\mathcal{O}(|S||T| + (|S| + |T|)M)$.
- computing Z is $\mathcal{O}(|S||T|)$
- computing the probability distribution for sampling is $\mathcal{O}((|S| + |T|)M)$

COde: https://github.com/jiangnanhugo/PALM

Robust Learning via Area Loss Minimization

$$\frac{area(a^*,a)}{area}$$
 (3)

(4) $(T,T)Pr_{\theta}(a|S,T).$

	$ S \in [1, 100], T \in [100, 200]$		$ S \in [100, 200], T \in [1, 100]$	
	Precision (%)	Recall (%)	Precision (%)	Recall (%)
	exact/ 4-offset/10-offset	exact/ 4-offset /10-offset	exact/4-offset/10-offset	exact/4-offset/10-offset
DP	7.8/31.3/51.2	20.4/39.0/56.3	20.2/40.4/59.4	6.1/26.3/ 45.1
PALM	9.9 /29.8/48.7	23.5/43.1/62.3	26.8/44.6/63.2	6.4/26.6 /43.1
	$ S \in [1, 100], T \in [200, 400]$		$ S \in [200, 400], T \in [1, 100]$	
	exact/ 4-offset/10-offset	exact/ 4-offset/10-offset	exact/4-offset/10-offset	exact/4-offset/10-offset
DP	5.2/ 27.6/46.1	32.0/39.8/46.7	30.0/37.5/44.7	3.8/19.8/34.4
PALM	6.5 /26.9/43.3	51.4/62.5/73.3	52.7/63.5/73.8	3.3/18.7/31.0

Table 1. Comparison of precision and recall between our method and dynamic programming (DP) over different lengths of protein sequences on PDB [2] dataset. 4-offset/10-offset are the relaxed measures. PALM gets better results especially on longer sequences and remote homologies than the competing approach.

Ablation study on hyper-parameter λ

	$ S \in [1, 100], T \in [400, +\infty)$		$ S \in [400, +\infty), T \in [1, 100]$	
	Precision	Recall	Precision	Recall
	exact/4-offset/10-offset	exact/4-offset/10-offset	exact/4-offset/10-offset	exact/4-offset/10-offset
$\lambda = 50$	5.1%/22.6%/36.4%	75.3%/81.1%/86.3%	75.9%/ 81.1% /86.0%	2.6%/17.0%/27.2%
$\lambda = 100$	4.6%/21.3%/35.2%	75.3%/81.1%/86.3%	76.0%/81.1%/86.1%	3.1%/ 18.1%/29.1%
$\lambda = 500$	4.5%/20.9%/34.0%	75.4%/81.2%/86.4%	75.9%/81.0%/85.9%	3.1%/17.4%/28.3%
$\lambda \to +\infty$	4.2%/20.8%/35.7%	75.1%/80.9%/85.0 %	75.0%/80.7%/85.0%	3.5% /16.8%/27.8%

Table 2. When λ approaches infinity, area distance becomes more important in the inference of \hat{a} during training, which leads to \hat{a} more similar to the ground-truth alignment a^* . It can be seen that when we select a suitable λ that strikes a balance between the area distance and the score function, we can learn a better model than pure maximum likelihood learning (when $\lambda \to +\infty$).

Time efficiency of computing the gradient

S	T	PALM (Ours)	Autograd
[1, 100]	[1, 100]	$0.7\pm0.2\mathrm{s}$	$2.5 \pm 0.8s$
[100, 200]	[100, 200]	$2.7 \pm \mathbf{0.9s}$	$9.4 \pm 3.3s$
[100, 200]	[200, 400]	$6.6 \pm \mathbf{2.3s}$	$25.4 \pm 9.4s$
[200, 400]	[100, 200]	$6.2 \pm \mathbf{2.0s}$	$23.2 \pm 8.1s$
[200, 400]	[200, 400]	$12.5\pm2.3\mathrm{s}$	$51.7 \pm 11.2s$
$[400, +\infty)$	$[400, +\infty)$	$63.4 \pm \mathbf{32.0s}$	$297.6 \pm 282.2s$

Table 3. PALM is much time efficient than the competing method Autograd, which computes the exact gradient by automatically back-propagation, among all length intervals of two protein sequences.

[1] Geoffrey E Hinton. Training products of experts by minimizing contrastive divergence. *Neural* computation, 14(8):1771–1800, 2002.

[2] Fandi Wu and Jinbo Xu. Deep template-based protein structure prediction. *bioRxiv*, 2020.

This research was supported by NSF grants IIS-1850243, CCF-1918327.

Learning Effectiveness for PALM

Reference

Acknowledgements