

Learning Markov Random Fields for Combinatorial Structures via Sampling through Lovász Local Lemma

Nan Jiang^{1*}, Yi Gu^{2*}, Yexiang Xue¹

¹Purdue University, ²Northwestern University

Problem: Generative Modeling For Combinatorial Structures

- Learning generative models over combinatorial structures involve matching the model distribution with the data distribution.

- GAP: Existing works generates invalid structures, resulting in learning to separate valid and invalid structures, but NOT learning the structural difference between valid structures inside and outside the dataset.

Fully Differentiable Neural Network-based Implementation

Given constraints $C = (X_1 \lor X_2) \land (\neg X_1 \lor X_3)$, construct

$$w = \begin{bmatrix} [1,0,0] & [0,1,0] \\ [-1,0,0] & [0,0,1] \end{bmatrix}, \quad b = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \quad V = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$$

 $x_i = \mathbf{1}[u_i \ge P(X_i)]$ 1. Initialize. 2. Extract violated constraints. $Z = W \otimes x + b$ $S_j = 1 - \max_{1 \le k \le K} Z_{jk}$ 3. Variables to be resamples,

$$x = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \xrightarrow{} X_1 = 0$$

$$X_2 = 0,$$

$$X_3 = 1$$

$$S = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \xrightarrow{} c_1 \text{ is violated}$$

 X_1 and X_2 will A = |

be resampled.

- Our contribution: A fully-differentiable constraint reasoning layer based on Lovász Local Lemma that samples valid structures for learning.

Background: Constrained Markov random fields (MRF)

- Discrete variables $X = \{X_i\}_{i=1}^n$, with $X \in \{0,1\}^n$
- Constraints $C = \{c_k\}_{k=1}^L$.

The probability distribution for constrained Markov random fields is:

$$P_{\theta}(X = x \mid C) = \frac{\exp(\phi_{\theta}(x)) C(x)}{Z_{C}(\theta)}$$

- C(x) is the indicator function that evaluates to 1 if all constraints are satisfied.
- $\phi_{\theta}(x): X \to \mathbb{R}$, is the potential function.

 $-Z_{C}(\theta) = \sum_{x' \in X} \exp\left(\phi_{\theta}(x)\right) C(x), \text{ is the normalizing constant.}$

Learning task: minimize the negative log-likelihood over a dataset D:

$$-\frac{1}{|D|} \sum_{x^k \sim D}^N \log P_{\theta}(X = x^k | C)$$

The **gradient** of the negative log-likelihood is:

$$A_i = \mathbf{1}[\sum_{j=1}^{N} S_j V_{ji} \ge 1]$$

4. Resample variables

$$x = (1 - A) \times x + A \times \mathbf{1}[u_i \ge P(X_i)]$$

$$= \begin{bmatrix} 0\\1\\1 \end{bmatrix} \xrightarrow{X_1} = 0$$
$$X_2 = 1,$$
$$X_3 = 1$$

X

Fully differentiable implementation

Theoretical Guarantees

Condition 1 "Extreme Condition": Constraints *C* is called ``Extreme" if for constraints $c_i, c_j \in C$, 1) Either their domain variables do not intersect. 2) Or no variable assignment violates c_i, c_j sharing variables.

Theorem (Probability distribution) Given random variables $X = \{X_i\}_{i=1}^n$, constraints $C = \{c_k\}_{k=1}^{L}$ that satisfy the extreme condition and the parameters of the constrained MRF in the single variable form θ . Upon termination, Algorithm outputs an assignment x randomly drawn from the constrained MRF distribution: $x \sim P_{\theta}(X = x \mid C)$

Theorem (Time complexity) Let q_{\emptyset} be a non-zero probability of all the constraints are satisfied. Let q_{c_i} denote the probability that only constraint c_j is broken and the rest all

hold. If $q_{\emptyset} \ge 0$, the total number of re-samples throughout is $\frac{1}{q_{\emptyset}} \sum_{k=1}^{L} q_{c_k}$.

 $-\mathbb{E}_{x\sim D}\left(\nabla\phi_{\theta}(x)\right) + \mathbb{E}_{\tilde{x}\sim P_{\theta}(x|C)}\left(\nabla\phi_{\theta}(\tilde{x})\right).$ Sample from constrained MRF Sample from dataset D

> **Our Contribution:** sample valid structures based on Lovász local lemma.

Method: Sampling through Lovász Local Lemma

- Discrete variables $X_1, X_2, X_3 \in \{0, 1\}$. Marginal distributions $P(X_1)$, $P(X_2)$, $P(X_3)$, $P(X_i = x_i) = \frac{\exp(\theta_i x_i)}{\sum_{x' \in \{0,1\}} \exp(\theta_i x'_i)}$.
- Constraints $C = (X_1 \lor X_2) \land (\neg X_1 \lor X_3)$. normalizing constant $Z_C(\theta) = \sum \exp(\phi_{\theta}(x'))C(x)$. $x' \in \{0,1\}'$

Experiment: Learn random K-SAT Solution with preference

Our method is time efficient Our method generates 100% valid structures

Problem	(a) Training time per iteration (Mins) (\downarrow)								
size	Nelson	XOR	WAYS	WeightGen	CMSGen	KUS	QuickSampler	Unigen	Gibbs
10	0.13	26.30	1.75	0.64	0.22	0.72	0.40	0.66	0.86
0	0.15	134.50	3.04	T.O.	0.26	0.90	0.30	2.12	1.72
30	0.19	1102.95	6.62	T.O.	0.28	2.24	0.32	4.72	2.77
40	0.23	T.C.	33.70	T.O.	0.31	19.77	0.39	9.38	3.93
50	0.24	7. O.	909.18	T.O.	0.33	1532.22	0.37	13.29	5.27
500	5.99	Т.О.	T.O.	T.O.	34.17	T.O.	Т.О.	T.O.	221.83
1000	34.01	Т.О.	T.O.	T.O.	177.39	T.O.	T.O.	T.O.	854.59
	(b) Validness of generated solutions $(\%)$ (\uparrow)								
10 - 50	100	100	100	100	100	100	82.65	100	90.58
500	100	Т.О.	T.O.	T.O.	100	T.O.	7.42	100	54.27
1000	100	T.O.	T.O.	T.O.	100	T.O.	0.00	100	33.91
	(c) Approximation error of $\nabla \log Z_{\mathcal{C}}(\theta)$ (\downarrow)								
10	0.10	0.21	0.12	3.58	3.96	4.08	3.93	4.16	0.69
12	0.14	0.19	0.16	5.58	5.50	5.49	5.55	5.48	0.75
14	0.15	0.25	0.19	T.O.	6.55	6.24	7.79	6.34	1.30
1	0.16	0.25	0.15	T.O.	9.08	9.05	9.35	9.03	1.67
18	0.18	0.30	0.23	Т.О.	10.44	10.30	11.73	10.20	1.90

Our method estimates gradient more accurately

Our code implementation \rightarrow

CCF-1918327.