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Theorem (Probability distribution) Given  random variables , constraints 
 that satisfy the extreme condition and the parameters of the constrained 

MRF in the single variable form .  Upon termination, Algorithm outputs an assignment 
randomly drawn from the constrained MRF distribution: 

X = {Xi}n
i=1

C = {ck}L
k=1

θ
x  x ∼ Pθ(X = x |C)

Condition 1 “Extreme Condition”: Constraints  is called ``Extreme’’ if for constraints 
, 1) Either their domain variables do not intersect. 2) Or no variable 

assignment violates  sharing variables.

C
ci, cj ∈ C

ci, cj

1 0 0

0 0 1

0 1 1
All constraints are satisfied!

Resample  from X1, X2 P(X1), P(X2)

Sample   from constrained MRFSample from dataset D
Our Contribution: sample valid structures 
based on Lovász local lemma.

Resample  from  X1, X3 P(X1), P(X3)
initialize  Xi ∼ P(Xi)

S = [1
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X1 = 0
X2 = 0,
X3 = 1

is violated𝑐1

 and  will  
be resampled.
𝑋1 𝑋2

Fully differentiable implementation

Given constraints , construct 

         

C = (X1 ∨ X2) ∧ (¬X1 ∨ X3)

w = [ [1,0,0] [0,1,0]
[−1,0,0] [0,0,1]], b = [0 0

1 0], V = [1 1 0
1 0 1],

Our method estimates gradient more accurately

Our method is time efficient Our method generates 100% valid structures

Our method scales better 
with respect to problem 
size.

Theorem (Time complexity) Let  be a non-zero probability of all the constraints are 
satisfied. Let denote the probability that only constraint  is broken and the rest all 

hold. If , the total number of re-samples throughout is  .
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Problem: Generative Modeling For Combinatorial Structures

Background: Constrained Markov random fields (MRF)

Method: Sampling through Lovász Local Lemma

Fully Differentiable Neural Network-based Implementation

Theoretical Guarantees

Experiment: Learn random K-SAT Solution with preference
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X1 = 0
X2 = 1,
X3 = 1

x = [
0
0
1]

A = [
1
1
0]

x = [
0
1
1]

1. Initialize.                    

2. Extract violated constraints.        

  

  

3. Variables to be resamples, 

 

4. Resample variables 

xi = 1[ui ≥ P(Xi)]

Z = W ⊗ x + b
Sj = 1 − max

1≤k≤K
Zjk

Ai = 1[
L

∑
j=1

SjVji ≥ 1]

x = (1 − A) × x + A × 1[ui ≥ P(Xi)]

- Learning generative models over combinatorial structures involve matching 
the model distribution with the data distribution.

- Discrete variables , with  

- Constraints . 
The probability distribution for constrained Markov random fields is: 

 

-  is the indicator function that evaluates to 1 if all constraints are satisfied. 
- , is the potential function. 

- , is the normalizing constant. 

Learning task: minimize the negative log-likelihood over a dataset : 

 

The gradient of the negative log-likelihood is: 

X = {Xi}n
i=1 X ∈ {0,1}n

C = {ck}L
k=1

Pθ(X = x |C) =
exp (ϕθ(x)) C(x)

ZC(θ)
C(x)
ϕθ(x) : X → ℝ
ZC(θ) = ∑x′ ∈X

exp (ϕθ(x)) C(x)

D

−
1

|D |

N

∑
xk∼D

log Pθ(X = xk |C)

−𝔼x∼D (∇ϕθ(x)) + 𝔼x̃∼Pθ(x|C) (∇ϕθ(x̃)) .

- Discrete variables . 

-
Marginal distributions , . 

- Constraints . 

-
normalizing constant . 

GOAL: Sample valid assignments from  subject to constraints 
.

X1, X2, X3 ∈ {0,1}

P(X1), P(X2), P(X3) P(Xi = xi) =
exp(θixi)

∑x′ i∈{0,1} exp(θix′ i)

C = (X1 ∨ X2) ∧ (¬X1 ∨ X3)
ZC(θ) = ∑

x′ ∈{0,1}n

exp(ϕθ(x′ ))C(x)

P(X1)P(X2)P(X3)
C

- GAP: Existing works generates invalid structures, resulting in learning to 
separate valid and invalid structures, but NOT learning the structural 
difference between valid structures inside and outside the dataset. 

- Our contribution: A fully-differentiable constraint reasoning layer 
based on Lovász Local Lemma that samples valid structures for learning.


