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Learning to generate combinatorial structures

● Generative modeling received much success in AI

● Learning generative models over combinatorial 

structures involve matching the model distribution 

with the data distribution.
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Learning to generate combinatorial structures



● Generative modeling received much success in AI

● Learning generative models over combinatorial 

structures involve matching the model distribution with 

the data distribution.

● Increase the likelihood of structures in the training data 

while decreasing those not seen (generated by 

reasoning algorithms)

● GAP: Existing works generates invalid 

combinatorial structures; resulting in learning to 

separate valid and invalid structures, but NOT 

learning the structural difference between valid 

structures in the training dataset and those outside.

● Our contribution: develop a fully-differentiable 

constraint reasoning layer based on Lovasz Local 

Lemma that samples valid structures for learning.
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Learning to generate combinatorial structures



● Markov Random Fields (MRF)

○ Discrete variables 𝑋 = {𝑋𝑖}𝑖=1
𝑛 , with 𝑋 ∈ 0,1 𝑛.

○ Probability distribution:

Markov Random Fields for Combinatorial Structures 

𝑃 𝑋 = 𝑥 =
exp(𝜙𝜃 (𝑥))

𝑍(𝜃)
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● Constrained Markov Random Fields

○ Discrete variables 𝑋 = {𝑋𝑖}𝑖=1
𝑛 , with 𝑋 ∈ 0,1 𝑛.

○ Constraints 𝑪 = {𝒄𝒌}𝒌=𝟏
𝑲 .

● Markov Random Fields (MRF)

○ Discrete variables 𝑋 = {𝑋𝑖}𝑖=1
𝑛 , with 𝑋 ∈ 0,1 𝑛.

○ Probability distribution:

○ Potential function: 𝜙𝜃 𝑥 : 𝑋 → 𝑅. 

○ Normalizing constant 𝑍 𝜃 = σ𝑥′∈𝑋 exp(𝜙𝜃 (𝑥′)).

𝑃 𝑋 = 𝑥 =
exp(𝜙𝜃 (𝑥))

𝑍(𝜃)

7

Markov Random Fields for Combinatorial Structures 



● Constrained Markov Random Fields

○ Discrete variables 𝑋 = {𝑋𝑖}𝑖=1
𝑛 , with 𝑋 ∈ 0,1 𝑛.

○ Constraints 𝑪 = {𝒄𝒌}𝒌=𝟏
𝑲 .

○ Probability distribution:

𝐶(𝑥): indicator function which evaluates to 1 if all 

constraints are satisfied.

● Markov Random Fields (MRF)

○ Discrete variables 𝑋 = {𝑋𝑖}𝑖=1
𝑛 , with 𝑋 ∈ 0,1 𝑛.

○ Probability distribution:

○ Potential function: 𝜙𝜃 𝑥 : 𝑋 → 𝑅. 

○ Normalizing constant 𝑍 𝜃 = σ𝑥′∈𝑋 exp(𝜙𝜃 (𝑥′)).

𝑃 𝑋 = 𝑥 =
exp(𝜙𝜃 (𝑥))

𝑍(𝜃)

8

Markov Random Fields for Combinatorial Structures 
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𝑛 , with 𝑋 ∈ 0,1 𝑛.

○ Constraints 𝑪 = {𝒄𝒌}𝒌=𝟏
𝑲 .

○ Probability distribution:

𝐶(𝑥): indicator function which evaluates to 1 if all 

constraints are satisfied.

𝑍𝐶 𝜃 = σ𝑥′∈𝑋 exp 𝜙𝜃 𝑥′ 𝐶(𝑥)

● Markov Random Fields (MRF)

○ Discrete variables 𝑋 = {𝑋𝑖}𝑖=1
𝑛 , with 𝑋 ∈ 0,1 𝑛.

○ Probability distribution:

○ Potential function: 𝜙𝜃 𝑥 : 𝑋 → 𝑅. 

○ Normalizing constant 𝑍 𝜃 = σ𝑥′∈𝑋 exp(𝜙𝜃 (𝑥′)).

𝑃 𝑋 = 𝑥 =
exp(𝜙𝜃 (𝑥))

𝑍(𝜃) 𝑃 𝑋 = 𝑥｜C =
exp 𝜙𝜃 𝑥 𝐶(𝑥)

𝑍𝐶 (𝜃)
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Learning Constrained MRF

Learning task: minimize the negative log-likelihood over a training dataset 𝐷:

−
1

|𝐷|


𝑥∼𝐷

log 𝑃 𝑋 = 𝑥｜C

Inference task: generates the structure which attains the highest likelihood under constraints.

𝑥∗ = arg max𝑥′∈ 0,1 𝑛 𝑃 𝑋 = 𝑥′｜C

The gradient of the negative log-likelihood is:

Sample from constrained MRF

−𝐸𝑥∼𝐷 ∇𝜙𝜃 𝑥 + 𝐸𝑥∼𝑃(𝑋|𝐶)(∇𝜙𝜃( 𝑥))

Sample from 

dataset D
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Our contribution: sample valid 

structures using Lovasz local lemma.

−𝐸𝑥∼𝐷 ∇𝜙𝜃 𝑥 + 𝐸𝑥∼𝑃(𝑋|𝐶)(∇𝜙𝜃( 𝑥))

Learning Constrained MRF



Sampling through Lovasz Local Lemma

Inputs:

- Discrete variables 𝑋1, 𝑋2, 𝑋3, with 𝑋𝑖 ∈ 0,1 .

- Marginal distributions 𝑃(𝑋1), 𝑃(𝑋2), 𝑃(𝑋3).

- Constraints (in Conjunctive Normal Form) 

Output:

Sample valid assignments.
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𝐶 = 𝑐1 ∧ 𝑐2,

𝑐1 = 𝑋1 ∨ 𝑋2,

𝑐2 = ¬𝑋1 ∨ 𝑋3

𝑋1 𝑋𝟐 𝑋𝟑

1 0 0Random initialize 𝑋𝑖 ∼ 𝑃(𝑋𝑖) 

𝑃(𝑋𝑖) =
exp(𝜃𝑖𝑋𝑖)

σ
𝑋𝑖

′∈𝑿𝑖
exp(𝜃𝑖𝑋𝑖′)



13

𝑐2 is broken 

𝑃(𝑋𝑖) =
exp(𝜃𝑖𝑋𝑖)

σ
𝑋𝑖

′∈𝑿𝑖
exp(𝜃𝑖𝑋𝑖′)
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1 0 0
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Resample 𝑋1, 𝑋3 from

 𝑃 𝑋1 , 𝑃(𝑋3)

Sampling through Lovasz Local Lemma

𝑃(𝑋𝑖) =
exp(𝜃𝑖𝑋𝑖)

σ
𝑋𝑖

′∈𝑿𝑖
exp(𝜃𝑖𝑋𝑖′)
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1 0 0
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𝑋1 𝑋𝟐 𝑋𝟑

1 0 0

0 0 1𝑐1 is broken 

Sampling through Lovasz Local Lemma

𝑃(𝑋𝑖) =
exp(𝜃𝑖𝑋𝑖)

σ
𝑋𝑖

′∈𝑿𝑖
exp(𝜃𝑖𝑋𝑖′)
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𝑋1 𝑋𝟐 𝑋𝟑

1 0 0

0 0 1Resample 𝑋1, 𝑋2 from 

𝑃 𝑋1 , 𝑃(𝑋2) 

Sampling through Lovasz Local Lemma

𝑃(𝑋𝑖) =
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exp(𝜃𝑖𝑋𝑖′)
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Sampling through Lovasz Local Lemma
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𝑋1 𝑋𝟐 𝑋𝟑

1 0 0

0 0 1

0 1 1All constraints are satisfied!

𝑃(𝑋𝑖) =
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exp(𝜃𝑖𝑋𝑖′)
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● We convert constraints 𝐶 = {𝑐𝑘}𝑘=1
𝐿  tensor W, matrix b. 

● We also need a mapping matrix V

Implementing Sampling through Lovasz Local Lemma as several 

Fully Differentiable Neural Network Layers
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𝐶 = 𝑐1 ∧ 𝑐2,

𝑐1 = 𝑋1 ∨ 𝑋2,

𝑐2 = ¬𝑋1 ∨ 𝑋3

W=
[1 0 0] [0 1 0]

[−1 0 0] [0 0 1]

𝑏 =
0 0
1 0

𝑋1 is the 1st variable in 𝑐1. 𝑋2 is the 2nd variable in 𝑐1.

¬𝑋1 is the 1st variable in 𝑐2. 𝑋3 is the 2nd variable in 𝑐2.

the 1st variable in 𝑐2 is negated.

V=
1 1 0
1 0 1

𝑋1 and 𝑋2 are in 𝑐1.

𝑋1 and 𝑋3 are in 𝑐2.



1. Initialize

𝑥𝑖 = 1 𝑢𝑖 > 𝑃 𝑋𝑖

2. Extract violated constraints

𝑍 = 𝑊⨂𝑥 + 𝑏

𝑆𝑗 = 1 − max
1≤𝑘≤𝐾

𝑍𝑗𝑘

3. Variables to be resamples

𝐴𝑖 = 1 

𝑗=1

𝐿

𝑆𝑗𝑗𝑉𝑗𝑖 ≥ 1

4. Resample variables

𝑥 = 1 − A ∗ x + A ∗ 1 𝑢𝑖 > 𝑃 𝑋𝑖
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𝐶 = 𝑐1 ∧ 𝑐2,

𝑐1 = 𝑋1 ∨ 𝑋2 ,

𝑐2 = ¬𝑋1 ∨ 𝑋3

W =
[1 0 0] [0 1 0]

[−1 0 0] [0 0 1]

𝑏 =
0 0
1 0

V=
1 1 0
1 0 1

Input:

Discrete variables 𝑋1 , 𝑋2 , 𝑋3, 

with 𝑋1 ∈ 0,1 .

Marginal distributions 

𝑃(𝑋1), 𝑃(𝑋2), 𝑃(𝑋3).

Constraints 

x =
0
0
1

S =
1
0

𝐴 =
1
1
0

𝑋1 = 0,

𝑋2 = 0,

𝑋3 = 1

𝑐1is violated

𝑋1and 𝑋2 will be resampled.

x =
0
1
1

𝑋1 = 0,

𝑋2 = 1,

𝑋3 = 1

Fully Differentiable 

Implementing Sampling through Lovasz Local Lemma as several 

Fully Differentiable Neural Network Layers



Theoretical Guarantees
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Theorem 1 (probability distribution) Given  random variables 𝑋 = {𝑋𝑖}𝑖=1
𝑛  , constraints 𝐶 = {𝑐𝑘}𝑘=1

𝐿  that 

satisfy the extreme condition (Condition 1) and the parameters of the constrained MRF in the single variable 

form 𝜃 .  Upon termination, Algorithm outputs an assignment x randomly drawn from the constrained MRF 

distribution:

                                                                             x ∼ 𝑃 𝑋 = 𝑥｜𝐶 .

Condition 1 “Extreme Condition”: Constraints 𝐶 is called ̀ `Extreme’’ if for constraints 𝑐𝑖, 𝑐𝑗 ∈ 𝐶

1) Either their domain variables do not intersect.

2) Or no variable assignment violates 𝑐𝑖, 𝑐𝑗 sharing variables.

Lovasz local lemma guarantee we sample valid structures from the constrained MRF

𝐶 = 𝑐1 ∧ 𝑐2,

𝑐1 = 𝑋1 ∨ 𝑋2,

𝑐2 = ¬𝑋1 ∨ 𝑋3

Satisfy the extreme condition.



Theoretical Guarantees

Time is proportional to the number of constraints.
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Theorem 1 (probability distribution) Given  random variables 𝑋 = {𝑋𝑖}𝑖=1
𝑛  , constraints 𝐶 = {𝑐𝑘}𝑘=1

𝐿  that 

satisfy the extreme condition (Condition 1) and the parameters of the constrained MRF in the single variable 

form 𝜃 .  Upon termination, Algorithm outputs an assignment x randomly drawn from the constrained MRF 

distribution:

                                                                             x ∼ 𝑃 𝑋 = 𝑥｜𝐶 .

Theorem 2 (time complexity) Let q∅ be a non-zero probability of all the constraints are satisfied. Let 

q𝑐𝑗
 denote the probability that only constraint c𝑗 is broken and the rest all hold. If q∅ ≥ 0 , then the total number 

of re-sampling throughout the algorithm is  
1

q∅
σ𝑗=1

𝐿 q𝑐𝑗
.

Condition 1 “Extreme Condition”: Constraints 𝐶 is called ̀ `Extreme’’ if for constraints 𝑐𝑖, 𝑐𝑗 ∈ 𝐶

1) Either their domain variables do not intersect.

2) Or no variable assignment violates 𝑐𝑖, 𝑐𝑗 sharing variables.

Lovasz local lemma guarantee we sample valid structures from the constrained MRF



Experimental Analysis: Learn Random K-SAT Solutions 

with Preference

Our method takes much less time

22



Our method generates 100% valid structures.
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Experimental Analysis: Learn Random K-SAT Solutions 

with Preference



Our method estimate gradient more accurately

24

−𝐸𝑥∼𝐷 ∇𝜙𝜃 𝑥 + 𝐸𝑥∼𝑃(𝑋|𝐶)(∇𝜙𝜃( 𝑥))

Experimental Analysis: Learn Random K-SAT Solutions 

with Preference



Case studies

25

Our method scales 

better with respect 

to problem size.



Experimental Analysis: Learn Sink-

Free Orientation in Undirected Graphs

Our method 

estimate gradient 

more accurately
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Our method generates

100% valid structures.

Our method takes 

much less time

Experimental Analysis: Learn 

Vehicle Delivery Routes Problems

Our method is also efficient for other 

general NP-hard combinatorial problems



Conclusion

● Existing work focuses on separating invalid and valid instances rather than valid 

structures inside and outside of the training dataset.

● We propose a fully-differentiable constraint reasoning layer based on Lovasz 

Local Lemma that samples valid structures for learning.

27



Q & A?
https://github.com/jiangnanhugo/nelson-cd
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