

Learning Markov Random Fields for Combinatorial Structures via Sampling through Lovász Local Lemma

Nan Jiang^{1*}, Yi Gu^{2*}, Yexiang Xue^{1*} ¹Purdue University, ²Northwestern University

¹Purdue University, ²Northwestern University {jiang631, yexiang}@purdue.edu, Yi.Gu@u.northwestern.edu

* The first two authors contribute equally.

- Generative modeling received much success in AI
- Learning generative models over combinatorial structures involve matching the model distribution with the data distribution.

- Generative modeling received much success in AI
- Learning generative models over combinatorial structures involve matching the model distribution with the data distribution.
- Increase the likelihood of structures in the training data while decreasing those not seen (generated by reasoning algorithms)

- Generative modeling received much success in Al
- Learning generative models over combinatorial structures involve matching the model distribution with the data distribution.
- Increase the likelihood of structures in the training data while decreasing those not seen (generated by reasoning algorithms)
- GAP: Existing works generates invalid combinatorial structures; resulting in learning to separate valid and invalid structures, but NOT learning the structural difference between valid structures in the training dataset and those outside.

- Generative modeling received much success in AI
- Learning generative models over combinatorial structures involve matching the model distribution with the data distribution.
- Increase the likelihood of structures in the training data while decreasing those not seen (generated by reasoning algorithms)
- GAP: Existing works generates invalid combinatorial structures; resulting in learning to separate valid and invalid structures, but NOT learning the structural difference between valid structures in the training dataset and those outside.
- Our contribution: develop a fully-differentiable constraint reasoning layer based on Lovasz Local Lemma that samples valid structures for learning.

Markov Random Fields (MRF)

• Discrete variables $X = \{X_i\}_{i=1}^n$, with $X \in \{0,1\}^n$.

• Probability distribution:

$$P(X = x) = \frac{\exp(\phi_{\theta}(x))}{Z(\theta)}$$

Markov Random Fields (MRF)

- Discrete variables $X = \{X_i\}_{i=1}^n$, with $X \in \{0,1\}^n$.
- Probability distribution:

$$P(X = x) = \frac{\exp(\phi_{\theta}(x))}{Z(\theta)}$$

- Potential function: $\phi_{\theta}(x): X \to R$.
- Normalizing constant $Z(\theta) = \sum_{x' \in X} \exp(\phi_{\theta}(x'))$.

Markov Random Fields (MRF)

- Discrete variables $X = \{X_i\}_{i=1}^n$, with $X \in \{0,1\}^n$. • Discrete variables $X = \{X_i\}_{i=1}^n$, with $X \in \{0,1\}^n$.
- Probability distribution:

$$P(X = x) = \frac{\exp(\phi_{\theta}(x))}{Z(\theta)}$$

- Potential function: $\phi_{\theta}(x): X \to R$.
- Normalizing constant $Z(\theta) = \sum_{x' \in X} \exp(\phi_{\theta})$

Constrained Markov Random Fields

• Constraints $C = \{c_k\}_{k=1}^K$.

Markov Random Fields (MRF)

- Discrete variables $X = \{X_i\}_{i=1}^n$, with $X \in \{0,1\}^n$. • Discrete variables $X = \{X_i\}_{i=1}^n$, with $X \in \{0,1\}^n$.
- Probability distribution:

$$P(X = x) = \frac{\exp(\phi_{\theta}(x))}{Z(\theta)}$$

- Potential function: $\phi_{\theta}(x): X \to R$.
- Normalizing constant $Z(\theta) = \sum_{x' \in X} \exp(\phi_{\theta}(x'))$.

- Constrained Markov Random Fields
 - Constraints $C = \{c_k\}_{k=1}^K$.
 - Probability distribution:

 $\circ C(x)$: indicator function which evaluates to 1 if all constraints are satisfied.

Markov Random Fields (MRF)

- Discrete variables $X = \{X_i\}_{i=1}^n$, with $X \in \{0,1\}^n$. • Discrete variables $X = \{X_i\}_{i=1}^n$, with $X \in \{0,1\}^n$.
- Probability distribution:

$$P(X = x) = \frac{\exp(\phi_{\theta}(x))}{Z(\theta)}$$

- Potential function: $\phi_{\theta}(x): X \to R$.
- Normalizing constant $Z(\theta) = \sum_{x' \in X} \exp(\phi_{\theta}(x'))$.

- Constrained Markov Random Fields
 - Constraints $C = \{c_k\}_{k=1}^K$.
 - Probability distribution:

$$P(X = x \mid C) = \frac{\exp(\phi_{\theta}(x))C(x)}{Z_{C}(\theta)}$$

 $\circ C(x)$: indicator function which evaluates to 1 if all constraints are satisfied.

 $\circ Z_{C}(\theta) = \sum_{x' \in X} \exp(\phi_{\theta}(x')) C(x)$

Learning Constrained MRF

Learning task: minimize the negative log-likelihood over a training dataset D:

 $-\frac{1}{|D|}\sum_{x \in D} \log P(X = x \mid C)$ Inference task: generates the structure which attains the highest likelihood under constraints. $x^* = \arg \max_{x' \in \{0,1\}^n} P(X = x' \mid C)$

The gradient of the negative log-likelihood is:

dataset D

Learning Constrained MRF

Learning task: minimize the negative log-likelihood over a training dataset D:

 $-\frac{1}{|D|}\sum_{x \in D} \log P(X = x \mid C)$ Inference task: generates the structure which attains the highest likelihood under constraints. $x^* = \arg \max_{x' \in \{0,1\}^n} P(X = x' \mid C)$

The gradient of the negative log-likelihood is:

$$-E_{x\sim D}(\nabla \phi_{\theta}(x)) + E_{\tilde{x}}$$

Sample from Our
dataset D Stru

 $(\nabla \phi_{\theta}(\tilde{x}))$ r contribution: sample valid uctures using Lovasz local lemma.

11

Inputs:

- Discrete variables X_1, X_2, X_3 , with $X_i \in \{0, 1\}$.
- Marginal distributions $P(X_1), P(X_2), P(X_3)$.
- Constraints (in Conjunctive Normal Form)

 $C = c_1 \wedge c_2,$ $c_1 = X_1 \vee X_2,$ $c_2 = \neg X_1 \vee X_3$

Output:

$$P(X_i) = \frac{\exp(\theta_i X_i)}{\sum_{X'_i \in X_i} \exp(\theta_i X_i')}$$

X2	X 3
0	0

Inputs:

- Discrete variables X_1, X_2, X_3 , with $X_i \in \{0, 1\}$.
- Marginal distributions $P(X_1), P(X_2), P(X_3)$.
- Constraints (in Conjunctive Normal Form)

 $C = c_1 \wedge c_2,$ $c_1 = X_1 \vee X_2,$ $c_2 = \neg X_1 \vee X_3$

Output:

$$P(X_i) = \frac{\exp(\theta_i X_i)}{\sum_{X'_i \in X_i} \exp(\theta_i X_i')}$$

X2	X 3
0	0

Inputs:

- Discrete variables X_1, X_2, X_3 , with $X_i \in \{0, 1\}$.
- Marginal distributions $P(X_1), P(X_2), P(X_3)$.
- Constraints (in Conjunctive Normal Form)

 $C = c_1 \wedge c_2,$ $c_1 = X_1 \vee X_2,$ $c_2 = \neg X_1 \vee X_3$

Output:

$$P(X_i) = \frac{\exp(\theta_i X_i)}{\sum_{X'_i \in X_i} \exp(\theta_i X_i')}$$

X2	X3
0	0

Inputs:

- Discrete variables X_1, X_2, X_3 , with $X_i \in \{0, 1\}$.
- Marginal distributions $P(X_1), P(X_2), P(X_3)$.
- Constraints (in Conjunctive Normal Form)

 $C = c_1 \wedge c_2,$ $c_1 = X_1 \vee X_2,$ $c_2 = \neg X_1 \vee X_3$

Output:

$$P(X_i) = \frac{\exp(\theta_i X_i)}{\sum_{X'_i \in X_i} \exp(\theta_i X_i')}$$

X2	X 3
0	0
0	1

Inputs:

- Discrete variables X_1, X_2, X_3 , with $X_i \in \{0, 1\}$.
- Marginal distributions $P(X_1), P(X_2), P(X_3)$.
- Constraints (in Conjunctive Normal Form)

 $C = c_1 \wedge c_2,$ $c_1 = X_1 \vee X_2,$ $c_2 = \neg X_1 \vee X_3$

Output:

Sample valid assignments.

Resample X_1, X_2 from $P(X_1), P(X_2)$

$$P(X_i) = \frac{\exp(\theta_i X_i)}{\sum_{X'_i \in X_i} \exp(\theta_i X_i')}$$

X2	X 3
0	0
0	1

Inputs:

- Discrete variables X_1, X_2, X_3 , with $X_i \in \{0, 1\}$.
- Marginal distributions $P(X_1), P(X_2), P(X_3)$.
- Constraints (in Conjunctive Normal Form)

 $C = c_1 \wedge c_2,$ $c_1 = X_1 \vee X_2,$ $c_2 = \neg X_1 \vee X_3$

Output:

Sample valid assignments.

All constraints are satisfied!

$$P(X_i) = \frac{\exp(\theta_i X_i)}{\sum_{X'_i \in X_i} \exp(\theta_i X_i')}$$

X2	X 3
0	0
0	1
1	1

Implementing Sampling through Lovasz Local Lemma as several Fully Differentiable Neural Network Layers

• We convert constraints $C = \{c_k\}_{k=1}^L$ tensor W, matrix b.

$$C = c_1 \wedge c_2,$$

$$c_1 = X_1 \vee X_2,$$

$$c_2 = \neg X_1 \vee X_3$$

We define the effective of the effective formula of the effective of the effective

We also need a mapping matrix V

 X_1 is the 1st variable in c_1 . X_2 is the 2nd variable in c_1 . $\sqrt{=} \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \end{bmatrix} \\ \begin{bmatrix} -1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 1 \end{bmatrix} \end{bmatrix}$ $\neg X_1$ is the 1st variable in c_2 . X_3 is the 2nd variable in c_2 . $b = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$ the 1st variable in c_2 is negated.

 $V = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} \xrightarrow{\longrightarrow} X_1 \text{ and } X_2 \text{ are in } c_1.$

Implementing Sampling through Lovasz Local Lemma as several Fully Differentiable Neural Network Layers

Input: Discrete variables X_1, X_2, X_3 , with $X_1 \in \{0, 1\}$. Marginal distributions $P(X_1), P(X_2), P(X_3).$ Constraints

$$C = c_1 \wedge c_2,$$

$$c_1 = X_1 \vee X_2,$$

$$c_2 = \neg X_1 \vee X_3$$

$$W = \begin{bmatrix} [1 & 0 & 0] & [0 & 1 & 0] \\ [-1 & 0 & 0] & [0 & 0 & 1] \end{bmatrix}$$

$$b = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$$

$$V = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$$

1. Initialize $x_i = 1$ 2. Extract violate Z = $S_{i} = 1$ 3. Variables to be $A_{i} = 1$ 4. Resample vari x = (1 - A) * x**Fully Differentiable**

Theoretical Guarantees

distribution:

Lovasz local lemma guarantee we sample valid structures from the constrained MRF

Condition 1 "Extreme Condition": Constraints C is called ``Extreme" if for constraints $c_i, c_j \in C$ 1) Either their domain variables do not intersect. 2) Or no variable assignment violates c_i , c_j sharing variables.

$$C = c_1 \wedge c_2,$$

$$c_1 = X_1 \vee X_2, \qquad \longleftarrow \quad Sa$$

$$c_2 = \neg X_1 \vee X_3$$

Theorem 1 (probability distribution) Given random variables $X = \{X_i\}_{i=1}^n$, constraints $C = \{c_k\}_{k=1}^L$ that satisfy the extreme condition (Condition 1) and the parameters of the constrained MRF in the single variable form θ . Upon termination, Algorithm outputs an assignment x randomly drawn from the constrained MRF

 $\mathbf{x} \sim P(X = x \mid C).$

itisfy the extreme condition.

Theoretical Guarantees

distribution:

Lovasz local lemma guarantee we sample valid structures from the constrained MRF

Condition 1 "Extreme Condition": Constraints C is called ``Extreme" if for constraints $c_i, c_j \in C$ 1) Either their domain variables do not intersect. 2) Or no variable assignment violates c_i , c_j sharing variables.

Theorem 2 (time complexity) Let q_{\emptyset} be a non-zero probability of all the constraints are satisfied. Let q_{c_i} denote the probability that only constraint c_j is broken and the rest all hold. If $q_{\phi} \ge 0$, then the total number of re-sampling throughout the algorithm is $\frac{1}{a_{\alpha}}\sum_{j=1}^{L}q_{c_{j}}$.

Time is proportional to the number of constraints.

Theorem 1 (probability distribution) Given random variables $X = \{X_i\}_{i=1}^n$, constraints $C = \{c_k\}_{k=1}^L$ that satisfy the extreme condition (Condition 1) and the parameters of the constrained MRF in the single variable form θ . Upon termination, Algorithm outputs an assignment x randomly drawn from the constrained MRF

 $\mathbf{x} \sim P(X = x \mid C).$

Experimental Analysis: Learn Random K-SAT Solutions with Preference

D 11					• •					
Problem	(a) Training time per iteration (Mins) (\downarrow)									
size	NELSON	XOR	WAPS	WeightGen	CMSGen	KUS	QuickSampler	Unigen	Gibbs	
10	0.13	26.30	1.75	0.64	0.22	0.72	0.40	0.66	0.86	
20	0.15	134.50	3.04	Т.О.	0.26	0.90	0.30	2.12	1.72	
30	0.19	1102.95	6.62	Т.О.	0.28	2.24	0.32	4.72	2.77	
40	0.23	T.O.	33.70	Т.О.	0.31	19.77	0.39	9.38	3.93	
50	0.24	T.O.	909.18	Т.О.	0.33	1532.22	0.37	13.29	5.27	
500	5.99	T.O.	T.O.	Т.О.	34.17	T.O.	Т.О.	T.O.	221.83	
1000	34.01	T.O.	T.O.	T.O.	177.39	T.O.	T.O.	T.O.	854.59	

1

Our method takes much less time

Experimental Analysis: Learn Random K-SAT Solutions with Preference

Problem		(a) Training time per iteration (Mins) (\downarrow)									
size	NELSON	XOR	WAPS	WeightGen	CMSGen	KUS	QuickSampler	Unigen	Gibbs		
10	0.13	26.30	1.75	0.64	0.22	0.72	0.40	0.66	0.86		
20	0.15	134.50	3.04	T.O.	0.26	0.90	0.30	2.12	1.72		
30	0.19	1102.95	6.62	T.O.	0.28	2.24	0.32	4.72	2.77		
40	0.23	T.O.	33.70	Т.О.	0.31	19.77	0.39	9.38	3.93		
50	0.24	T.O.	909.18	T.O.	0.33	1532.22	0.37	13.29	5.27		
500	5.99	T.O.	T.O.	T.O.	34.17	T.O.	Т.О.	T.O.	221.83		
1000	34.01	T.O.	T.O.	T.O.	177.39	T.O.	T.O.	T.O.	854.59		
				(b) Validness o	f generated s	solutions (%	る) (†)				
10 - 50	100	100	100	100	100	100	82.65	100	90.58		
500	100	T.O.	T.O.	Т.О.	100	T.O.	7.42	100	54.27		
1000	100	Т.О.	T.O.	T.O.	100	T.O.	0.00	100	33.91		

Our method generates 100% valid structures.

Experimental Analysis: Learn Random K-SAT Solutions with Preference

Problem	(a) Training time per iteration (Mins) (\downarrow)										
size	Nelson	XOR	WAPS	WeightGen	CMSGen	KUS	QuickSampler	Unigen	Gibbs		
10	0.13	26.30	1.75	0.64	0.22	0.72	0.40	0.66	0.86		
20	0.15	134.50	3.04	T.O.	0.26	0.90	0.30	2.12	1.72		
30	0.19	1102.95	6.62	T.O.	0.28	2.24	0.32	4.72	2.77		
40	0.23	T.O.	33.70	T.O.	0.31	19.77	0.39	9.38	3.93		
50	0.24	T.O.	909.18	T.O.	0.33	1532.22	0.37	13.29	5.27		
500	5.99	T.O.	T.O.	T.O.	34.17	T.O.	T.O.	T.O.	221.83		
1000	34.01	T.O.	T.O.	T.O.	177.39	T.O.	T.O.	T.O.	854.59		
			((b) Validness o	f generated s	solutions (%	る) (↑)				
10 - 50	100	100	100	100	100	100	82.65	100	90.58		
500	100	T.O.	T.O.	T.O.	100	T.O.	7.42	100	54.27		
1000	100	T.O.	T.O.	T.O.	100	T.O.	0.00	100	33.91		
				(c) Approxima	tion error of	$\nabla \log Z_{\mathcal{C}}(\theta)$	θ) (\downarrow)				
10	0.10	0.21	0.12	3.58	3.96	4.08	3.93	4.16	0.69		
12	0.14	0.19	0.16	5.58	5.50	5.49	5.55	5.48	0.75		
14	0.15	0.25	0.19	T.O.	6.55	6.24	7.79	6.34	1.30		
16	0.16	0.25	0.15	T.O.	9.08	9.05	9.35	9.03	1.67		
18	0.18	0.30	0.23	T.O.	10.44	10.30	11.73	10.20	1.90		

Our method estimate gradient more accurately $-E_{x\sim D}(\nabla \phi_{\theta}(x)) + E_{\tilde{x}\sim P(X|C)}(\nabla \phi_{\theta}(\tilde{x}))$

Case studies

Our method scales better with respect to problem size.

Experimental Analysis: Learn Sink-Free Orientation in Undirected Graphs

	Problem	(a) Training Time Per Epoch (Mins) (↓				
	size	NELSON	Gibbs	CMSGen		
	10	0.53	9.85	0.69		
	20	0.53	80.12	1.93		
	30	0.72	256.38	3.65		
	40	0.93	777.01	5.99		
	50	1.17	T.O.	9.08		
		(b) var	dness of	Orientations (%) (\uparrow)		
Our method takes	7	100	50.16	100		
	8	100	64.63	100		
much less time	9	100	47.20	100		
		100	62.60	100		
		(c) Approx	imation E	error of $V \log Z_{\mathcal{C}}(\theta)$ (1)		
Our method generates	5		0.09	0.21		
	7	0.05	0.08	2.37		
100% valid structures.	9	0.03	0.11	2.37		
	11 19		0.17	8.02 11.97		
Our method	13	0.05	$\frac{0.20}{(d) \mathbf{MAD}}$	$\frac{11.21}{0.00}$		
Our methou	10	61.14	(\mathbf{u}) MAP	<u>64 56</u>		
estimate aradient	10	01.14 55 26	55 20	04.30 17 70		
	20 30		06.20	47.79 100 00		
more accurately	30 40	40.01	39.88	38.90		
	50	46 12	TO	42.11		
		10.12	1.0.	12.11		

Experimental Analysis: Learn Vehicle Delivery Routes Problems

Our method is also efficient for other general NP-hard combinatorial problems

Conclusion

- Existing work focuses on separating invalid and valid instances rather than valid structures inside and outside of the training dataset.
- We propose a fully-differentiable constraint reasoning layer based on Lovasz Local Lemma that samples valid structures for learning.

https://github.com/jiangnanhugo/nelson-cd