Solving Satisfiability Modulo Counting for Symbolic and Statistical AI Integration with Provable Guarantees

Jinzhao Li, Nan Jiang, Yexiang Xue*
Association for the Advancement of Artificial Intelligence

Satisfiability Modulo Counting (SMC)

The SMC problem is to determine if there exists $\boldsymbol{x}=$ $\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathcal{X}=\{0,1\}^{n}$ and $\boldsymbol{b}=\left(b_{1}, b_{2}, \ldots, b_{k}\right) \in\{0,1\}^{k}$ that satisfies the formula:

$$
\phi(\boldsymbol{x}, \boldsymbol{b}) \wedge\left[b_{i} \Rightarrow\left(\sum_{\boldsymbol{y}_{i} \in \mathcal{Y}_{i}} f_{i}\left(\boldsymbol{x}, \boldsymbol{y}_{i}\right) \geq 2^{q_{i}}\right)\right], \forall i \in\{1, \ldots, k\}
$$

where each b_{i} is a Boolean predicate that is true if and only if the corresponding model count exceeds a threshold. Bold symbols (i.e., $\boldsymbol{x}, \boldsymbol{y}_{i}$ and \boldsymbol{b}) are vectors of Boolean variables. ϕ, f_{1}, \ldots, f_{k} are Boolean functions. $\sum f_{i}$ computes the number of satisfying assignments (model counts) of f_{i}.

Challenges:

- It is challenging to solve SMC because of their highly intractable nature ($N P^{P P}$-complete)- still intractable even with good satisfiability solvers and model counters
- Current exact solvers struggle with generalizing to largescale problems due to their intractable nature.
- Randomized methods either cannot quantify the quality of their solutions, or they provide one-sided guarantees, or their guarantees can be arbitrarily loose.

Contribution:

- We propose XOR-SMC, a polynomial algorithm with accesses to NP-oracles, to solve highly intractable SMC problems with constant approximation guarantees.

Preliminaries: XOR Counting

For a single predicate in the SMC problem: $\sum_{y \in y} f(x, y)$, suppose we would like to know if it exceeds 2^{q}. Consider the satisfiability (SAT) formula:

$$
f(\boldsymbol{x}, \boldsymbol{y}) \wedge X O R_{1}(\boldsymbol{y}) \wedge \cdots \wedge X O R_{q}(\boldsymbol{y})
$$

Here, $X O R_{1}, \ldots, X O R_{q}$ are randomly sampled XOR constraints. The SAT formula above is likely to be satisfiable if more than 2^{q} different \boldsymbol{y} vectors render $f(\boldsymbol{x}, \boldsymbol{y})$ true. Conversely, it is likely to be unsatisfiable if $f(\boldsymbol{x}, \boldsymbol{y})$ has less than 2^{q} satisfying assignments.

The XOR-SMC Algorithm

\longleftrightarrow Examine the majority of T repetitions

- As illustrated by Figure, the key motivation behind our proposed XOR-SMC algorithm is to notice that XORCounting described in preliminaries section can be written as a Boolean formula.
- When we embed this Boolean formula into a SMC problem, the problem translates into a Satisfiability-ModuloSAT problem, or equivalently, an SAT problem. - Examining the satisfiability status of the majority of the embeddings reduces error rates and gets a constant approximation guarantee.

```
Algorithm 1: XOR-SMC \(\left(\phi,\left\{f_{i}\right\}_{i=1}^{k},\left\{q_{i}\right\}_{i=1}^{k}, \eta, c\right)\)
\(T \leftarrow\left\lceil\frac{(n+k) \ln 2-\ln \eta}{\alpha(c, k)}\right\rceil\);
    for \(t=1\) to \(T\) do
        for \(i=1\) to \(k\) do
            \(\psi_{i}^{(t)} \leftarrow f_{i}\left(\mathbf{x}, \mathbf{y}_{i}^{(t)}\right) ;\)
            for \(j=1=\ldots q_{i}\) do \(\mathbf{o}_{-}=-\)
            \(\left\lvert\, \begin{aligned} & \psi_{i}^{(\bar{t}} \leftarrow \psi_{i}^{(t)} \wedge \operatorname{XOR}_{j}\left(\mathbf{y}_{i}^{(\bar{t})}\right) ;\end{aligned}\right.\)
        end - - - - - - - - - - - - - -
            \(\psi_{i}^{(t)} \leftarrow \psi_{i}^{(t)} \vee \neg b_{i} ;\)
        end Convert model counting
        \(\psi_{t} \leftarrow \psi_{1}^{(t)} \wedge \cdots \wedge \psi_{k}^{(t)} ;\) to SAT formula
    end
    \(\phi^{*} \leftarrow \phi \wedge \operatorname{Majority}\left(\psi_{1}, \ldots, \psi_{T}\right)\);
    if there exists \(\left(\mathbf{x}, \mathbf{b},\left\{\mathbf{y}_{i}^{(1)}\right\}_{i=1}^{k}, \ldots,\left\{\mathbf{y}_{i}^{(T)}\right\}_{i=1}^{k}\right)\) that
    satisfies \(\phi^{*}\) then
    | return True; SMC translates to SAT
    5 else
        return False;
    end
```


Constant Approximation Guarantee

Main Theorem (see details in the paper):
Let $0<\eta<1$ and $c \geq \log (k+1)+1$. Select $T=\lceil((n+$
k) $\ln 2-\ln \eta) / \alpha(c, k)]$, we have

- Suppose there exists $\boldsymbol{x}_{0} \in\{0,1\}^{n}$ and $\boldsymbol{b}_{0} \in\{0,1\}^{k}$, such that $\operatorname{SMC}\left(\phi, f_{1}, \ldots, f_{k}, q_{1}+c, \ldots, q_{k}+c\right)$ is true,

$$
\phi\left(\boldsymbol{x}_{0}, \boldsymbol{b}_{0}\right) \wedge\left(\bigwedge\left(b_{i} \Rightarrow \sum_{y_{i} \in y_{i}} f_{i}\left(\boldsymbol{x}_{0}, \boldsymbol{y}_{i}\right) \geq 2^{q_{i}+c}\right)\right)
$$

Then algorithm XOR-SMC $\left(\phi,\left\{f_{i}\right\}_{i=1}^{k},\left\{q_{i}\right\}_{i=1}^{k}, \eta, c\right)$ returns true with probability greater than $1-\eta$.

- Contrarily, suppose $\operatorname{SMC}\left(\phi, f_{1}, \ldots, f_{k}, q_{1}+c, \ldots, q_{k}+c\right)$ is not satisfiable, i.e., $\forall \boldsymbol{x}, \boldsymbol{b}$,

$$
\neg\left(\phi(\boldsymbol{x}, \boldsymbol{b}) \wedge\left(\bigwedge\left(b_{i} \Rightarrow \sum_{y_{i} \in y_{i}} f_{i}\left(\boldsymbol{x}, \boldsymbol{y}_{i}\right) \geq 2^{q_{i}-c}\right)\right)\right),
$$

Then algorithm XOR-SMC $\left(\phi,\left\{f_{i}\right\}_{i=1}^{k},\left\{q_{i}\right\}_{i=1}^{k}, \eta, c\right)$ returns false with probability greater than $1-\eta$.

Experiments: Shelter Allocation

We evaluate XOR-SMC on emergency shelter allocation problems, which aim to optimize accessibility (measured by the number of paths) from residential areas to shelters.

Our XOR-SMC finds the best shelter allocation plan in different sized maps in the shortest time.
Acknowledgement
This research was supported by NSF
grants CCF-1918327.

