
The SMC problem is to determine if there exists 𝒙 =
𝑥!, 𝑥", … , 𝑥# ∈ 𝒳 = 0,1 # and 𝒃 = 𝑏!, 𝑏", … , 𝑏$ ∈ 0,1 $ that

satisfies the formula:

𝜙 𝒙, 𝒃 ∧ 𝑏% ⇒ /
𝒚!∈𝒴!

𝑓% 𝒙, 𝒚% ≥ 2)! , ∀𝑖 ∈ 1, … , 𝑘 ,

where each 𝑏% is a Boolean predicate that is true if and only if
the corresponding model count exceeds a threshold. Bold
symbols (i.e., 𝒙, 𝒚% and 𝒃) are vectors of Boolean variables. 𝜙,
𝑓!, . . . , 𝑓$ are Boolean functions. ∑𝑓% computes the number of
satisfying assignments (model counts) of 𝑓%.

Solving Satisfiability Modulo Counting for Symbolic and
Statistical AI Integration with Provable Guarantees

Satisfiability Modulo Counting (SMC)

Challenges:
• It is challenging to solve SMC because of their highly

intractable nature (𝑁𝑃** 	-complete)– still intractable even
with good satisfiability solvers and model counters

• Current exact solvers struggle with generalizing to large-
scale problems due to their intractable nature.

• Randomized methods either cannot quantify the quality of
their solutions, or they provide one-sided guarantees, or
their guarantees can be arbitrarily loose.

Contribution:
• We propose XOR-SMC, a polynomial algorithm with

accesses to NP-oracles, to solve highly intractable SMC
problems with constant approximation guarantees.

The XOR-SMC Algorithm

- As illustrated by Figure, the key motivation behind our
proposed XOR-SMC algorithm is to notice that XOR-
Counting described in preliminaries section can be written
as a Boolean formula.
- When we embed this Boolean formula into a SMC
problem, the problem translates into a Satisfiability-Modulo-
SAT problem, or equivalently, an SAT problem.
- Examining the satisfiability status of the majority of the
embeddings reduces error rates and gets a constant
approximation guarantee.

Preliminaries: XOR Counting

For a single predicate in the SMC problem: ∑𝒚∈𝒴 𝑓(𝒙, 𝒚),
suppose we would like to know if it exceeds 2). Consider the
satisfiability (SAT) formula:

𝑓 𝒙, 𝒚 ∧ 𝑋𝑂𝑅! 𝒚 ∧ ⋯∧ 𝑋𝑂𝑅)(𝒚)
Here, 𝑋𝑂𝑅!, … , 𝑋𝑂𝑅) are randomly sampled XOR constraints.
The SAT formula above is likely to be satisfiable if more than
2) different 𝒚 vectors render 𝑓(𝒙, 𝒚) true. Conversely, it is
likely to be unsatisfiable if 𝑓(𝒙, 𝒚) has less than 2) satisfying
assignments.

Jinzhao Li, Nan Jiang, Yexiang Xue*

{li4255, jiang631, yexiang}@purdue.edu
Department of Computer Science, Purdue University

Acknowledgement

This research was supported by NSF
grants CCF-1918327.

Main Theorem (see details in the paper):
Let 0 < 𝜂 < 1 and 𝑐 ≥ 𝑙𝑜𝑔 𝑘 + 1 + 1. Select 𝑇 = I

J
K

L
(

)
𝑛 +

𝑘 𝑙𝑛2	− 𝑙𝑛 𝜂 /𝛼 𝑐, 𝑘 , we have
• Suppose there exists 𝒙+ ∈ 0,1 # and 𝒃+ ∈ 0,1 $, such that
𝑆𝑀𝐶(𝜙, 𝑓!, … , 𝑓$, 𝑞! + 𝑐,… , 𝑞$ + 𝑐) is true,

𝜙 𝒙+, 𝒃+ ∧ U 𝑏% ⇒ /
𝒚!∈𝒴!

𝑓% 𝒙+, 𝒚% ≥ 2)!,- ,

 Then algorithm XOR-SMC(𝜙, 𝑓% %.!
$, 𝑞% %.!

$, 𝜂, 𝑐) returns
true with probability greater than 1	 − 	𝜂.
• Contrarily, suppose 𝑆𝑀𝐶(𝜙, 𝑓!, … , 𝑓$, 𝑞! + 𝑐,… , 𝑞$ + 𝑐) is not

satisfiable, i.e., ∀𝒙, 𝒃,

¬ 𝜙 𝒙, 𝒃 ∧ U 𝑏% ⇒ /
𝒚!∈𝒴!

𝑓% 𝒙, 𝒚% ≥ 2)!/- ,

 Then algorithm XOR-SMC(𝜙, 𝑓% %.!
$, 𝑞% %.!

$, 𝜂, 𝑐) returns
false with probability greater than 1	 − 	𝜂.

Constant Approximation Guarantee

Convert model counting
to SAT formula

SMC translates to SAT

Experiments: Shelter Allocation

Our XOR-SMC finds the best shelter allocation plan in different
sized maps in the shortest time.

We evaluate XOR-SMC on emergency shelter
allocation problems, which aim to optimize
accessibility (measured by the number of paths) from
residential areas to shelters.

