Control Variable Experiment for Symbolic Regression

Nan Jiang (jiang631@purdue.edu)

Department of Computer Science Purdue University, USA

In collaboration with Yexiang Xue.

Motivation: The history for the discovery of Ideal Gas Law

The task is to predict the governing equation among all the possible equations with the given dataset shown below, which is known as symbolic regression.

	Physical formula	Symbolic	Symbolic Expression				
	$P = \frac{RnT}{V}$	$ \qquad \qquad y = \frac{c_1 x_1 x_2}{x_3}$					
Symbols	Physical Meaning	Variables	Variable Domains				
R	Ideal gas constant	Constant c_1	8.31446				
n	Number of moles	$ $ Input variable x_1	(0.01, 100)				
T	Absolute Temperature	Input variable x_2	(0,1000)				
V	Volume	Input variable x_3	(0.001, 10)				
Р	Absolute Pressure	$\ $ Output variable y					

(a) The symbolic expression of ideal gas law.

Current algorithms directly search for the optimal expression involving all three variables, which scales poorly to multiplevariable expressions.

Can we expediate the discovery process?

(c) Dataset from the governing expression $y = c_1 x_1 x_2 / x_3$.

#Moles n(#mol)	Temperature T (Kelvin)	Volume $V(m^3)$	Pressure P (Pa)
Input variable x_1	Input variable x_2	Input variable x_3	Output y
0.58	291	0.002	6.90×10^{5}
44.50	273	1.00	1.01×10^{5}
10.00	273	1.00	2.27×10^{4}
• • •		• • •	• • •

Motivation: The history for the discovery of Ideal Gas Law

• In 1663, Robert Boyle found

PV=constant

where the number of moles (n) and temperature (T) are fixed.

• In 1787 and again in 1802, Jacques Charles and Joseph Louis Gay-Lussac demonstrated

V/T = constant

where the number of moles (n) and pressure (P) are fixed.

• In 1811, Amedeo Avagadro demonstrated

V/n=constant

where the pressure (P) and temperature (T) are fixed.

• Finally, we arrived at the ideal gas law,

PV=nRT

The scientists use control variable experiment to solve a much simpler task.

Can we introduce this idea into symbolic regression, so that the algorithm mimic human scientist?

	(a) The symbolic expression of ideal gas law.									
	Physical formula		Symbolic	Expression						
	$P = \frac{RnT}{V}$		y =	$\frac{c_1x_1x_2}{x_3}$						
Symbols	Physical Meaning	\parallel Vari	iables	Variable]						
R	Ideal gas constant	Cons	stant c_1	8.31446						
n	Number of moles	Inpu	t variable x_1	(0.01, 100)						
T	Absolute Temperature	Inpu	t variable x_2	(0, 1000)						
V	Volume	Inpu	t variable x_3	(0.001, 10)						
P	Absolute Pressure	Outr	out variable y							

X ₁	X ₂	X ₃	Y
2.5	1.0	9.5	12
3.0	-1.0	4.0	1
1.6	3.5	5.2	10.8
1.8	1.0	3.2	5
7.1	8.6	3.8	64.9
1.7	1.0	2.3	4
2.5	2.6	3.1	9.6
8.9	1.1	2.0	11.8
4.2	-1.0	2.2	-2
5.8	1.0	7.2	13
1.6	5.7	1.2	10.3
9.7	-1.0	1.7	-8

• Learning a symbolic expression from data

0

- A good benchmark mimicking scientific discovery process.
- Incredibly difficult because of the large search space of all possible expressions.
- Can you guess which equation $y = f(x_1, x_2, x_3)$ generates the data shown in the left table?

X ₁	X ₂	X ₃	Y
2.5	1.0	9.5	12
1.8	1.0	3.2	5
1.7	1.0	2.3	4
5.8	1.0	7.2	13

- Learning a symbolic expression from data
 - A good benchmark mimicking scientific discovery process.
- Incredibly difficult because of the large search space of all possible expressions.
- Can you guess which equation $y = f(x_1, x_2, x_3)$ generates the data shown in the left table?
- How about if I only ask you to look into these rows?

$$y = x_1 + x_3?$$

X ₁	X ₂	X ₃	Y
3.0	-1.0	4.0	1
4.2	-1.0	2.2	-2
9.7	-1.0	1.7	-8

- Learning a symbolic expression from data
 - A good benchmark mimicking scientific discovery process.
- Incredibly difficult because of the large search space of all possible expressions.
- Can you guess which equation $y = f(x_1, x_2, x_3)$ generates the data shown in the left table?
- How about if I only ask you to look into these rows?

$$y = x_1 + x_3?$$

• How about these rows?

0

$$y = -x_1 + x_3?$$

X ₁	X ₂	X ₃	Y	
2.5	1.0	9.5	12	
3.0	-1.0	4.0	1	ł
1.8	1.0	3.2	5	
1.7	1.0	2.3	4	
4.2	-1.0	2.2	-2	
5.8	1.0	7.2	13	
9.7	-1.0	1.7	-8	

Red and blue data are two control variable experiment trials (X₂ controlled)!

Control variable experiments *simplify* symbolic regression!

- Learning a symbolic expression from data
 - A good benchmark mimicking scientific discovery process.
- Incredibly difficult because of the large search space of all possible expressions.
- Can you guess which equation $y = f(x_1, x_2, x_3)$ generates the data shown in the left table?

• How about if I only ask you to look into these rows?

 $\gamma =$

 $y = x_1 + x_3?$

• How about these rows?

 $y = -x_1 + x_3?$

• Maybe the equation is:

$$x_2 x_1 + x_3$$
? **INDEED!**

Control Variable Experiments

(a) Ground-truth expression

(b) Reduced form after controlling x_2, x_3, x_4

	/			1		/			i
x ₁	x ₂	\mathbf{x}_3	x_4	У	X_1	x ₂	x ₃	\mathbf{x}_4	У
0.3	0.5	0.1	0.7	-0.32	0.6	0.3	0.8	0.2	0.42
0.6	0.5	0.1	0.7	-0.29	0.1	0.3	0.8	0.2	0.02
0.2	0.5	0.1	0.7	-0.33	0.2	0.3	0.8	0.2	0.10
0.9	0.5	0.1	0.7	-0.26	0.9	0.3	0.8	0.2	0.66
	<u> </u>	ntrolle	ed			<u> </u>	ontroll	ed ,	
(c) Trial T ₁						(d)	Trial 7	Г ₂	

- Control variable experimentation a classic procedure widely implemented and proven useful in science.
- **Controlled variables**: take the same value in a trial, but vary in values across trials
- Free variables: values change within a trial
- **Ground-truth equation**: the hidden equation that generates the data
- Reduced form equation: Under a controlled experiment, the data looks "as if" generated by the reduced equation, in which controlled variables are replaced with constants.

Control Variable Experiment with Genetic Programming (CVGP)

(a) Control x_{2}, x_{3}, x_{4}

(b) Control *x*₃,*x*₄

(c) Control x₄

Experiment Results

One	Dataset	CVGP	ours)	C	βP	D	SR	P	QT	VI	PG	GPN	Aeld
Ops	configs	50%	75%	50%	75%	50%	75%	50%	75%	50%	75%	50%	75%
	(2,1,1)	0.198	0.490	0.024	0.053	0.032	3.048	0.029	0.953	0.041	0.678	0.387	22.806
	(4,4,6)	0.036	0.088	0.038	0.108	1.163	3.714	1.016	1.122	1.087	1.275	1.058	1.374
	(5,5,5)	0.076	0.126	0.075	0.102	1.028	2.270	1.983	4.637	1.075	2.811	1.479	2.855
inv	(5,5,8)	0.061	0.118	0.121	0.186	1.004	1.013	1.005	1.006	1.002	1.009	1.108	2.399
	(6,6,8)	0.098	0.144	0.104	0.167	1.006	1.027	1.006	1.020	1.009	1.066	1.035	2.671
	(6,6,10)	0.055	0.097	0.074	0.132	1.003	1.009	1.005	1.008	1.004	1.015	1.021	1.126
	(3,2,2)	0.098	0.165	0.108	0.425	0.350	0.713	0.351	1.831	0.439	0.581	0.102	0.597
	(4,4,6)	0.078	0.121	0.120	0.305	7.056	16.321	5.093	19.429	2.458	13.762	2.225	3.754
\sin ,	(5,5,5)	0.067	0.230	0.091	0.313	32.45	234.31	36.797	229.529	14.435	46.191	28.440	421.63
cos	(5,5,8)	0.113	0.207	0.119	0.388	195.22	573.33	449.83	565.69	206.06	629.41	363.79	666.57
	(6,6,8)	0.170	0.481	0.186	0.727	1.752	3.824	4.887	15.248	2.396	7.051	1.478	6.271
	(6,6,10)	0.161	0.251	0.312	0.342	11.678	26.941	5.667	24.042	7.398	25.156	11.513	28.439
	(3,2,2)	0.049	0.113	0.023	0.166	0.663	2.773	1.002	1.992	0.969	1.310	0.413	2.510
	(4,4,6)	0.141	0.220	0.238	0.662	1.031	1.051	1.297	1.463	1.051	1.774	1.093	1.769
\sin ,	(5,5,5)	0.157	0.438	0.195	0.337	1.098	3.617	1.018	5.296	1.012	1.27	1.036	3.617
cos,	(5,5,8)	0.122	0.153	0 36	0.186	1.009	1.103	1.017	1.429	1.007	1.132	1.07	2.904
inv	(6,6,8)	0.209	0.590	9 - 9	0.646	1.003	1.153	1.047	1.134	1.059	1.302	1.029	3.365
	(6,6,10)	0.139	0.232	0.0	0.159	1.654	3.408	1.027	1.069	1.009	1.654	1.445	2.106

Median (50%) and 75%-quantile NMSE values of the symbolic expressions found by all the algorithms on several noisy benchmark datasets. Our CVGP finds symbolic expressions with the smallest NMSEs.

Conclusions

- Control Variable Genetic Programming (CVGP) for symbolic regression
 - Learning from control variable experiments
 - Incrementally build complex equations from simple ones using genetic programming
 Lea
- Look into future: passive learning vs. active probing
 - Science progress resulted from insightful experiment design, courageous hypothesis forming (reasoning) + high-capacity modeling (learning)

