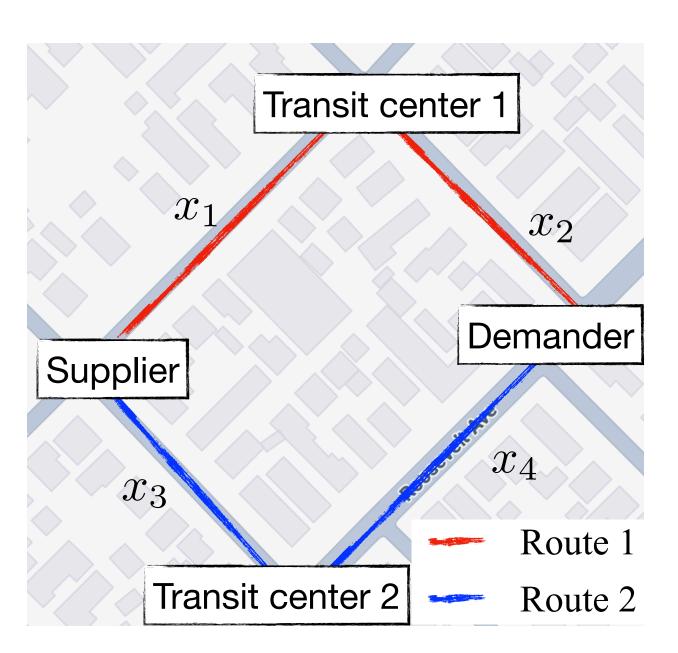


Satisfiability Modulo Counting (SMC) formula: Given a formula $\phi(\mathbf{x},\mathbf{b})$ for Boolean constraints and two sets of weighted functions, $\{f_i\}_{i=1}^M$ and $\{g_k\}_{k=1}^K$, representing discrete probability distributions, the SMC problem is to determine if the following formula is satisfiable over Boolean variables $\bf x$ and $\bf b$:

$$\phi(\mathbf{x}, \mathbf{b})$$
, where $b_j \Leftrightarrow \sum_{\mathbf{y}_j} f_j(\mathbf{x}, \mathbf{y}_j) \ge q_j$, or $b_j \Leftrightarrow \sum_{\mathbf{y}_j} f_j(\mathbf{x}, \mathbf{y}_j) \ge \sum_{\mathbf{z}_k} g_k(\mathbf{x}, \mathbf{z}_k)$, for $j = 1, ..., M$

Motivating example: formulate robust supply chain problem into SMC problem



(a) Pick Route 1 or Route 2?

Ensure a valid route

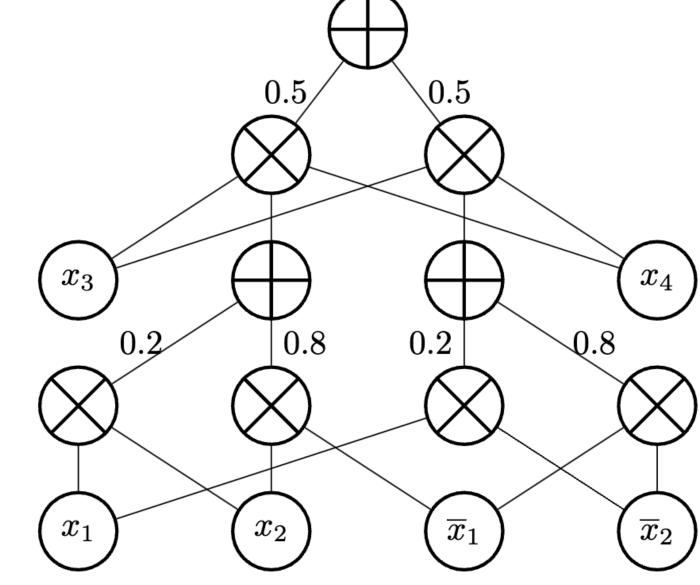
For Route 1: $b_1 \Rightarrow x_1 \land x_2$ For Route 2: $b_2 \Rightarrow x_3 \land x_4$ For only one route: $b_1 \oplus b_2$

Ensure sufficient connectivity

For Route 1: $P(b_1 \text{ is accessible}) \geq q$

For Route 2: $P(b_2 \text{ is accessible}) \geq q$

(b) SMC Formulation



(c) Probabilistic circuit for stochastic events

SMC formula

$$\phi(\mathbf{x}, \mathbf{b}) = \underbrace{(b_1 \oplus b_2)}_{(a)} \land \underbrace{(b_1 \Rightarrow x_1 \land x_2)}_{(b)} \land \underbrace{(b_2 \Rightarrow x_3 \land x_4)}_{(c)}, \text{ where } b_1 \Leftrightarrow \sum_{x_3, x_4} P(x_1, x_2, x_3, x_4) \ge q, \quad b_2 \Leftrightarrow \sum_{x_1, x_2} P(x_1, x_2, x_3, x_4) \ge q,$$

Execution steps of baseline exact solvers:

- 1. Use an SAT solver to solve the Boolean SAT $\phi(\mathbf{x}, \mathbf{b})$, e.g., $x_1 = x_2 = b_1 = \text{True}, x_3 = x_4 = b_2 = \text{False}$
- 2. infers the marginal probability:

o
$$\sum_{x_3,x_4} P(x_1 = x_2 = \text{True}, x_3, x_4) = 0.1 < q$$

3. Adds the negated clause $\neg(x_1 \land x_2 \land b_1)$ to formula ϕ to omit this assignment in the future. Return to step 1.

Execution steps of our Koco-SMC solvers:

- 1. Suggest a partial assignment for $\phi(\mathbf{x}, \mathbf{b})$, e.g., $\circ x_1 = \text{True}$
- 2. Check the upper bound of the counting part:

o
$$\max_{x_2} \sum_{x_2, x_4} P(x_1 = \text{True}, x_2, x_3, x_4) = 0.1 < q$$
.

3. Adds the negated clause $-x_1$ to formula ϕ to avoid this assignment in the future. Return to step 1.

Our Koco-SMC saves time by avoiding further assignments to the remaining variables!

Experimental Analysis

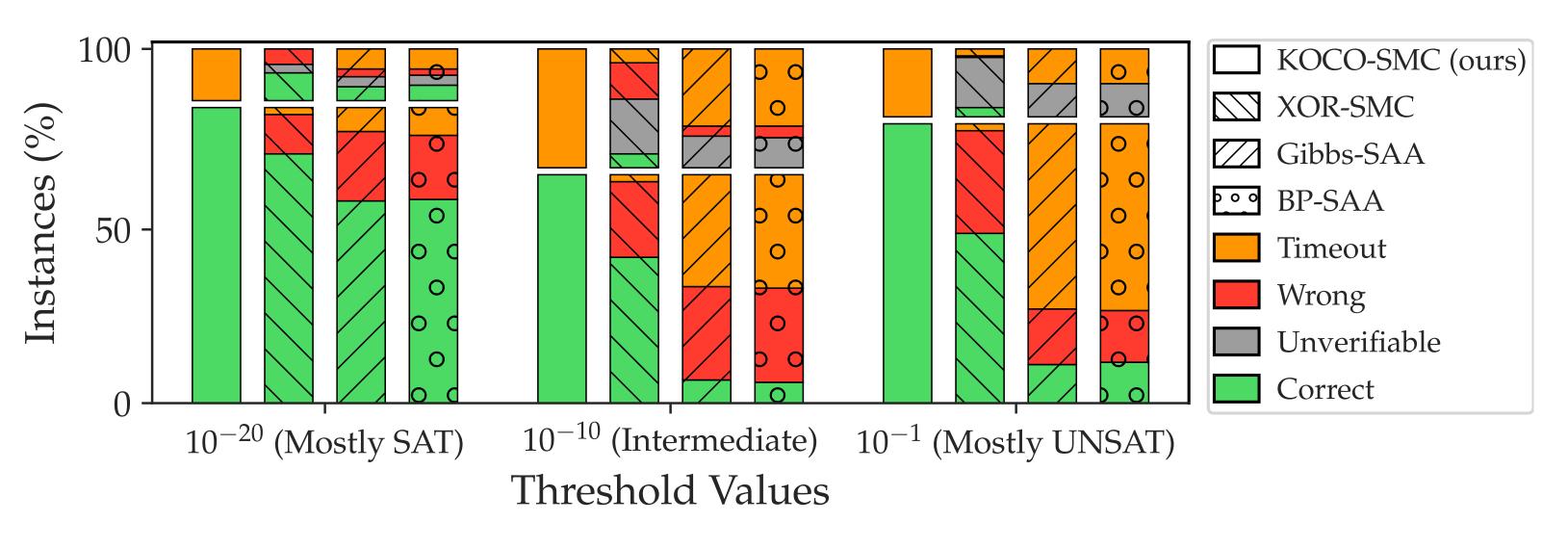


Figure 2. Comparison of KOCO-SMC and approximate solvers on datasets partitioned by threshold values.

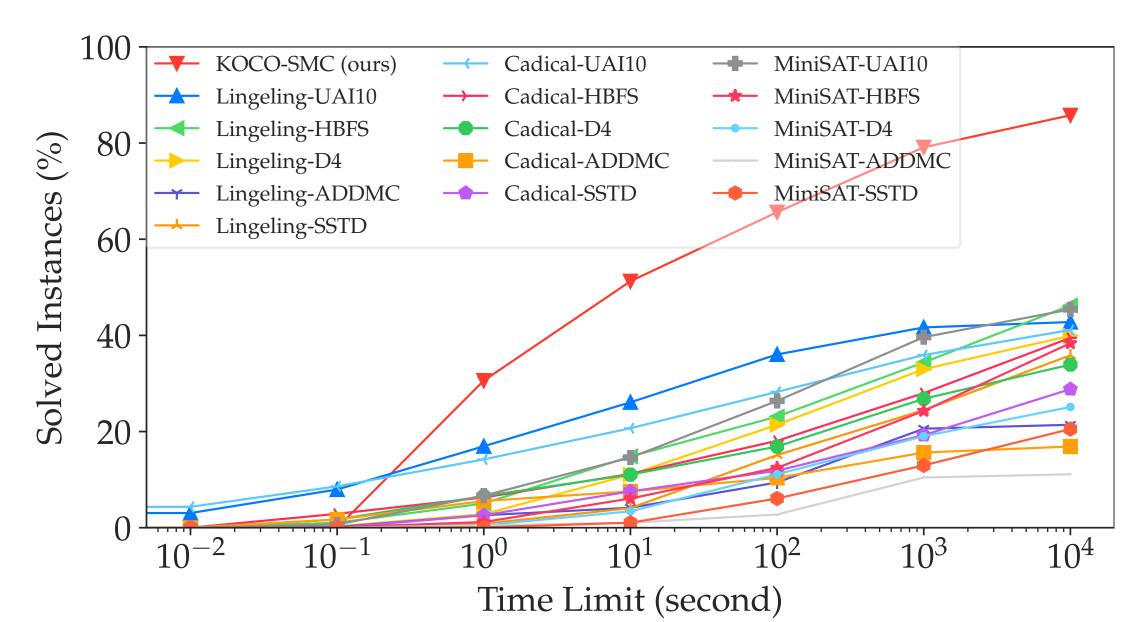


Figure 3. The percentage of instances from the entire dataset solved within the time limit.