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Experience Replay (ER)  An agent stores past experiences and randomly samples (replays) transitions during the 
Q-learning process. Many variants, like Prioritized Experience Replay, and Hindsight Experience Replay
Reverse Experience Replay (RER) Inspired by sequential replay occurs in the rat hippocampus [1] — a region of 
the brain crucial for memory formation.
Reverse Experience Replay - based Q-learning Samples consecutive sequences of transitions (of length L) from the 
replay buffer. Q-learning updates are performed in the reverse order of the sampled sequences.
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Background
Linear MDP Assumption:  (1) Reward function: can be written as the inner product of the parameter  
and the feature function 

. 
(2)Transition probability: proportional to its corresponding feature 

.
(3) The  function is computed as: 

the error of  function to the error of learned parameter  by Linear MDP:    
 

w ∈ ℝd

ϕ(s, a) : 𝒮 × 𝒜 → ℝd

P( ⋅ |s, a) ∝ ϕ(s, a)
Q

Q(s, a; w) = ⟨w, ϕ(s, a)⟩
Q w

ε(s, a) = Q̂(s, a) − Q*(s, a) ⇔ ŵ − w*

The error breaks into two parts (Lemma 3):

 

where  is the sampled sequence, and we denote:

, with each 

The bias term can reduce to zero if  is bounded (Lemma C.2), i.e.,
Need to prove: A proper bound

ŵ − w* = ΓL (w1 − w*)
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Our Result: We show it can be upper bound with a weaker assumption using the proposed combinatorial 
counting. The upper bound becomes:
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Previous Result: The expansion is: 
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0 < η ≤ 1 A tighter bound

Our Idea: counting the big summation
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To tackle: 

• Lemma 1: for non-zero vector :

• It is a relaxation: only depend on  and .
• The summation containing a combinatorial number of elements becomes:
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Count how many cases of picking valid  and   at each possible position in the consecutive sequence of state-
action-reward tuples.
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“////” indicates this slot cannot be chosen.
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In this case 1, the count is: . Rest cases are shown in paper.
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Counting case I


