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Experience Replay
• Experience Replay (ER) 

• An agent stores past experiences and randomly samples 
(replays) transitions during the Q-learning process.

• Many variants have been proposed.

- Prioritized Experience Replay

- Hindsight Experience Replay

Experience replay buffer

Agent Environment

Take an action
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Experience Replay
• Experience Replay (ER) 

• An agent stores past experiences and randomly samples 
(replays) transitions during the Q-learning process.

• Many variants have been proposed.

- Prioritized Experience Replay

- Hindsight Experience Replay

• Reverse Experience Replay (RER) 

• Inspired by sequential replay occurs in the rat hippocampus 
[1] — a region of the brain crucial for memory formation.
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[1] Foster, David J., and Matthew A. Wilson. "Reverse replay of behavioural sequences in hippocampal place cells during the awake state." Nature (2006)



Reverse Experience Replay - based Q-learning

• Samples consecutive sequences of transitions (of length L) from the replay buffer.

• Q-learning updates are performed in the reverse order of the sampled sequences.
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Our contribution
• RER shows fast convergence speed both empirically [2] and theoretically [3].

• However, the latest theoretical analysis only holds for a small learning rate ( ) and short sampled sequences 
(length ):

• We provide a new idea for analyzing RER, offering theoretical support that RER converges with a larger 
learning rate and over longer sequences.

η
L

ηL < 1/3
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[2] Rotinov, Egor. "Reverse experience replay." arXiv:1910.08780 (2019).
[3] Agarwal, Naman, et al. "Online target q-learning with reverse experience replay: Efficiently finding the optimal policy for linear mdps." ICLR, 2021 



Necessary Assumptions of RER
• Linear MDP Assumption: 

• Reward function: can be written as the inner product of the parameter  and the feature function 
.

• Transition probability: proportional to its corresponding feature .

• The  function is computed as: 

• Convert the error of  function to the error of learned parameter  by Linear MDP

 

w ∈ ℝd

ϕ(s, a) : 𝒮 × 𝒜 → ℝd

P( ⋅ |s, a) ∝ ϕ(s, a)

Q Q(s, a; w) = ⟨w, ϕ(s, a)⟩

Q w

ε(s, a) = Q̂(s, a) − Q*(s, a) ⇔ ŵ − w*
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Estimated Q after some iterations Actual Q



Analysis of the Error
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• The error breaks into two parts (Lemma 3):

 

where  is the sampled sequence, and we denote:

, with each 

• The bias term can reduce to zero if  is bounded (Lemma C.2), i.e.,

Need to prove: A proper bound

ŵ − w* = ΓL (w1 − w*)
Bias term

+ η
L

∑
l=1

εlΓl−1ϕl

variance term

.

s1
a1,r1 s2

a2,r2 s3 → … → sL

ΓL = (I − ηϕ1ϕ⊤
1 ) (I − ηϕ2ϕ⊤

2 )…(I − ηϕLϕ⊤
L ) ϕL = ϕ(sL, aL)

𝔼(s,a)∼μ [Γ⊤
LΓL]

𝔼(s,a)∼μ [Γ⊤
LΓL] ⪯



So previous method upper bounds the large summation with a strong assumption.

𝔼(s,a)∼μ [Γ⊤
LΓL] ⪯ I − η

L

∑
l=1

𝔼(s,a)∼μ [ϕlϕ⊤
l ] ⪯ (1 −

ηL
κ ) I

⪯ η
L

∑
l=1

𝔼(s,a)∼μ [ϕlϕ⊤
l ]Requirement: ηL < 1/3

Result from previous method 

Expanded by definition,

                        

𝔼(s,a)∼μ [Γ⊤
LΓL] = 𝔼(s,a)∼μ [(I − ηϕLϕ⊤

L )⋯(I − ηϕ1ϕ⊤
1 ) (I − ηϕ1ϕ⊤

1 )⋯(I − ηϕLϕ⊤
L )]

= I − 2η𝔼(s,a)∼μ [
L

∑
l=1

ϕlϕ⊤
l ] + 𝔼(s,a)∼μ

2L

∑
k=2

(−η)k ∑
l1,…,lk

ϕl1ϕ
⊤
l1

…ϕlkϕ
⊤
lk

.
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We show it can be upper bound with a weaker assumption using the proposed combinatorial counting.
The upper bound becomes:

𝔼(s,a)∼μ [Γ⊤
LΓL] ⪯ (1 −

η(4 − 2L)L + L − (1 − η)L−1L − η2L
κ ) I,

⪯ η
L

∑
l=1

𝔼(s,a)∼μ [ϕlϕ⊤
l ]Requirement: ηL < 1/3

Our Result

The expansion is: 

                        

𝔼(s,a)∼μ [Γ⊤
LΓL] = 𝔼(s,a)∼μ [(I − ηϕLϕ⊤

L )⋯(I − ηϕ1ϕ⊤
1 ) (I − ηϕ1ϕ⊤

1 )⋯(I − ηϕLϕ⊤
L )]

= I − 2η𝔼(s,a)∼μ [
L

∑
l=1

ϕlϕ⊤
l ] + 𝔼(s,a)∼μ

2L

∑
k=2

(−η)k ∑
l1,…,lk

ϕl1ϕ
⊤
l1

…ϕlkϕ
⊤
lk

.

0 < η ≤ 1 A tighter bound
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Our idea: combinatorially counting the big summation

To tackle: 

• Lemma 1: for non-zero vector :

• It is a relaxation: only depend on  and .

• The summation containing a combinatorial number of elements becomes:

𝔼(s,a)∼μ

2L

∑
k=2

(−η)k ∑
l1,…,lk

ϕl1ϕ
⊤
l1

…ϕlkϕ
⊤
lk

x

|x⊤ϕl1ϕ
⊤
l1

…ϕlkϕ
⊤
lk

x | ≤
1
2

x⊤ (ϕl1ϕ
⊤
l1

+ ϕlkϕ
⊤
lk ) x

l1 lk

∑
l1,…,lk

ϕl1ϕ
⊤
l1

…ϕlkϕ
⊤
lk

⪯ ∑
(l1,lk)

1
2 (ϕl1ϕ

⊤
l1

+ ϕlkϕ
⊤
lk ) =

L

∑
l=1

Cl ⋅ ϕlϕ⊤
l

Represents the number of combinations 

 that start/end with  

ϕl1ϕ
⊤
l1

…ϕlkϕ
⊤
lk

ϕl



Our idea: combinatorially counting the big summation

∑
(l1,lk)

1
2 (ϕl1ϕ

⊤
l1

+ ϕlkϕ
⊤
lk ) ⇒

L

∑
l=1

Cl ⋅ ϕlϕ⊤
l

Count how many cases of picking valid  and   at each possible position in the consecutive sequence of state-
action-reward tuples.

l1 lk

fix l1 = l

“////” indicates this slot cannot be chosen.

 can be placed to  many positions.l2, …, lk L + l − 2

1Indices of the slots L …l
///// ///// ///// /////

1 L… l
ϕlϕ⊤

l

22l + 1… …l + 1

In this example, the count is: 
L

∑
l=1

(L + l − 2
k − 1 ) ϕlϕ⊤

l



The rest cases (omitted)
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1L …l

fix lk = l can be placed to  positionsl1, …, lk−1 L + l − 2

///// ///// ///// /////
1 L… l

ϕlϕ⊤
l

22l + 1… …l + 1Indices of 
the slots

///// ///// ///// ///// ///// /////
1L …l 1 L… l

ϕlϕ⊤
l

22l + 1… …l + 1

 can be placed to 
 positions

l2, …, lk−1
2l − 2

fix l1 = l

ϕlϕ⊤
l

fix lk = l

Indices of 
the slots

///// ///// /////
1L …l 1 L… l

ϕlϕ⊤
l

22l + 1… …l + 1

 can be placed to 
 positions

l1, …, lk−1
L − l

fix lk = l

Indices of 
the slots

“////” indicate this slot cannot be chosen.
Indices of 
the slots

///// ///// ///// ///// ///// ///// ///// ///// ///// ///// ϕlϕ⊤
l

fix l1 = l

1L …l 1 L… l22l + 1… …l + 1

 can be placed to 
 positions.

l2, …, lk
L − l

∑
l1,…,lk

ϕl1ϕ
⊤
l1

…ϕlkϕ
⊤
lk

⪯
L

∑
l=1

((L + l − 2
k − 1 ) + (L − l

k − 1) + (2l − 2
k − 2 )) ϕlϕ⊤

l

• Finally:

Sum over extensive terms Re-weighted sum



Main convergence is improved
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Summary

• We tighten the convergence analysis using combination-counting, which is particularly 
well-suited for RER.

• With the new bound: 

When learning rate  and sequence length  satisfies , it provides a tighter 
bound on the Q-learning error. (Theorem 2 and Lemma 4)

The bound is applicable for boarder cases (only needs ).

• We believe that RER has great potential and warrants further study.

𝔼(s,a)∼μ [Γ⊤
LΓL] ⪯ (1 −

η(4 − 2L)L + L − (1 − η)L−1L − η2L
κ ) I,

η L ηL < 1/3

0 < η < 1
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Thank You

• Contact:

• Nan Jiang: jiang631@purdue.edu

• Jinzhao Li: li4255@purdue.edu

• Yexiang Xue: yexiang@purdue.edu
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Sketch of Pipeline
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• Convert the error of  function to the error of learned parameter  (Linear MDP)

• The error breaks into two parts (Lemma 3):

 

• The bias term reduces to zero if  is bounded (Lemma C.2).

Some upper bound

Q w

ε(s, a) = Q̂(s, a) − Q*(s, a) ⇔ ŵ − w*

ŵ − w* = ΓL (w1 − w*)
Bias term

+ η
L

∑
l=1

εlΓl−1ϕl

variance term

.

𝔼(s,a)∼μ [Γ⊤
LΓL]

𝔼(s,a)∼μ [Γ⊤
LΓL] ⪯



Details
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Bounds for Bias and variance terms are improved

The convergence requirement is relaxed from

  

to 

η * L < 1/3

0 < η ≤ 1
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