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Experience Replay

e Experience Replay (ER)

Agent Environment

* An agent stores past experiences and randomly samples

.. . . Take an action
(replays) transitions during the Q-learning process.

——

* Many variants have been proposed.

- Prioritized Experience Replay

- Hindsight Experience Replay
Sample a batch
and learn

Save result
(s,a,r,s’)

Experience replay buffer



Experience Replay

e Experience Replay (ER)

* An agent stores past experiences and randomly samples

Reverse Experience Replay (RER)

(replays) transitions during the Q-learning process.

Many variants have been proposed.
- Prioritized Experience Replay

- Hindsight Experience Replay

Inspired by sequential replay occurs in the rat hippocamp
[I] — a region of the brain crucial for memory formatior
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Reverse Experience Replay - based Q-learning

 Samples consecutive sequences of transitions (of length L) from the replay buffer.

* Q-learning updates are performed in the reverse order of the sampled sequences.
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Replay buffer



Our contribution

* RER shows fast convergence speed both empirically [2] and theoretically [3].

* However, the latest theoretical analysis only holds for a small learning rate () and short sampled sequences
(length L):

nL < 1/3

* We provide a new idea for analyzing RER, offering theoretical support that RER converges with
and over

[2] Rotinov, Egor. "Reverse experience replay." arXiv:1910.08780 (2019).
[3] Agarwal, Naman, et al. "Online target g-learning with reverse experience replay: Efficiently finding the optimal policy for linear mdps." ICLR, 2021
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Necessary Assumptions of RER

* Linear MDP Assumption:

e Reward function: can be written as the inner product of the parameter w € R¢ and the feature function

d(s,a): & X I — R
e Transition probability: proportional to its corresponding feature P( - | s, a) « ¢(s, a).

e The QO function is computed as: O(s, a; w) = (w, ¢(s, a))

e(s,a) = Q(S, a)— 0*(s,a) ©w — w*

/ \

Estimated Q after some iterations Actual Q



Analysis of the Error

* The error breaks into two parts (Lemma 3):

L
w—wt=17, (wl — w*) + ;72 el’;_1¢; .
=1

Bias term

variance term

apry ol :
where s; — 5, — 53 — ... — 57 is the sampled sequence, and we denote:

I, = (T—ng ) (T—ndopy )...(X—npyp, ), with each ¢, = p(s;, a;)

Need to prove: E, , |[I'/T;| < A proper bound




Result from previous method

Expanded by definition,
_(s,a)rv,u [FZFL] — _(s,a)rv/,{ [(I o 7]¢L¢l—,r) (I - ;7¢1¢1T - ~=. 4 --

D> ) .cblkqslj} -
A
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L 2L
=1-2n — (5,a)~U [Z ¢z¢zT] T C(5.aju [Z (—ﬂ)k
/=1 : k=2 l

1

L
Requirement: 7L < 1/3 =7 2 = (s5,a)~H [¢I¢ZT]
=1

So previous method upper bounds the large summation with a strong assumption.

L nL
E e [T20L) S T=1 ) By [010]] < (1 ) I

[=1 K
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Our Result

The expansion is:
= (s,a)~p [F_LFFL] — S(s.a)~u [(I — 77¢L¢[T) (I — 77¢1¢

’“

L 2L
=1-2n — (5,a)~u [Z ¢z¢zT] T E(5 a)ou Z (—ﬂ)k
/=1 : k=2 l

> bbb
A

1

Requirement: N 0<n<l <7 o ¢Z¢ZT] A tighter bound

We show it can be upper bound with a weaker assumption using the proposed combinatorial counting.
The upper bound becomes:

(4—-2L)L+L—-(1-nt'L-—5n°L
SO ' ) (1 - K - — 1.




Our idea: combinatorially counting the big summation

2L
T k T T
To tackle: Eqg ., | D (=00 D ..y )
k=2 l”lk

1

e Lemma |:for non-zero vector X:

1
\XTCbzlﬁblT- - -451,{6’51:3“ < EXT (Cbzﬂﬁg T Cbz,ﬁbl:) X
e |tis a relaxation: only depend on /; and /,.

* The summation containing a combinatorial number of elements becomes:

L
Z bbb, =< Z % <€bzl€ble t ¢zk¢zz> = Z C @
A (I,1,) =1

Represents the number of combinations ¢llgbllT. . °¢lk¢l:
that start/end with ¢,



Our idea: combinatorially counting the big summation

1 L
X5 (sl +a0]) = ZZT
(L1.4) =1

Count how many cases of picking valid /; and [, at each possible position in the consecutive sequence of state-
action-reward tuples.

“/IIII” indicates this slot cannot be chosen.

Indices of the slots I I+l ) 1 1 o Il I1+1 ... L

(S, R T A (S

l,, ..., [, can be placed to L 4+ [ — 2 many positions.

S (L+1-2
In this example, the count is: 2 1

[=1

) o



The rest cases (omitted)

Indices of Indices of

the slots L . l+1 2 1 1 2 ... [ [+1 ... L the slots L .. I+ 1 2 1 1 2 ... [ [+1 ... L

¢Z¢ZT Cbzd)lT
1 1 1 1 1 1 At r 1 r At

lis...,1,_; can be placed to

[,,....,l,_, can be placed to L + [ — 2 positions
L — [ positions . k=1 P P

“////” indicate this slot cannot be chosen.

Indices of Indices of
theslots L ... [+1 I oo 201 1 2 .. L I+1 ... L theslots —y 1+1 [ ... 2 11 2 | 1 I+1 ... L
b, ) dip)
At At At At r 1 0\ r A
l,, ..., 1,_, can be placed to L, ...,1 can b§ .placed to
21 — 2 positions L — [ positions.
* Finally:

L
L+1-2 L—1 20 -2
T .o ¢T < + + !
|IERRRRLY% —_

hf—i

Sum over extensive terms Re-weighted sum



Main convergence is improved

Theorem 2. For Linear MDP, assume the reward function, as well as the feature, is bounded
R(s,a) € [0,1], ||@(s,a)ll2 < 1, for all (s,a) € S x A. Let T be the maximum episodes, N be the
frequency of the target network update, n be the learning rate and L be the length of sequence for
RER described in Algorithm 1. When n € (0,1),L > 1, with sample complexity

" ~T/N | Tk exp N(n(4 —2L)L + L —n*L) N nlog(+)
1—~  \/ No(1—~)4 K

QT (s,a) — Q*(s,a)|e < e holds with probability at least 1 — §.



Summary

* We tighten the convergence analysis using combination-counting, which is particularly
well-suited for RER.

4 -20)L+L—(1—n) 'L -n°L
., With the new bound: E,,_, [I'/T;| < (1 i ) = ! >I,
K

O When learning rate # and sequence length L satisfies 7. < 1/3, it provides a tighter
bound on the Q-learning error. (Theorem 2 and Lemma 4)

O The bound is applicable for boarder cases (only needs 0 < 7 < 1).

* We believe that RER has great potential and warrants further study.
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Sketch of Pipeline

e Convert the error of O function to the error of learned parameter w (Linear MDP)
e(s,a) = Q(s,a) — Q*(s,a) & W — w*

* The error breaks into two parts (Lemma 3):

L
w—w* =17, (wl — w*) + 772 el _ ¢ .
=1

Bias term

variance term

» The bias term reduces to zero if £ ., [FZFL] is bounded (Lemma C.2).

~(s5,a)~u [FZFL] < Some upper bound




Details

Figure 1: Case 1 in the propose combinatorial counting procedure. The task is to count how many
terms ¢y, ¢, ..., ¢, can be “reduced to” ¢;¢, for a fixed | using Lemma 1, for 1 <1 < L. When
we let [; pick the left [-th slot, [, cannot choose the left terms with indices L,...,[ + 1. Because of
the sequential ordering constraint /; should be on the right of [;_1. To avoid double counting, we
also disallow assigning the right [-th slot to lx. There are 2L — (L — (I 4+ 1)) — 1 = L + [ — 2 many
slots to assign the rest sequences lo, ..., [; of length £k — 1. Therefore, we obtain (Llﬁzz) many terms
for the first case. See all the rest cases in Figure 2 in the appendix.



Bounds for Bias and variance terms are improved

The convergence requirement is relaxed from

n*L<1/3

to

O0<y <1

Lemma 4 (Bound on the bias term). Let x € R? be a non-zero vector and N is the frequency for
the target network to be updated. For n € (0,1),L € N and L > 1, the following matriz’s positive
semi-definite inequality holds with probability at least 1 — o:

2

1
N(n4—-2L)L + L —
D HFLX §exp( (n( ) il L )[||X|‘¢
j=N

¢
The ¢-based norm is defined in Definition 1.




