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Two Pillars in AI: Machine Learning and Automated Reasoning
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• Top-down and deductive: precise models 
from problem description. 

• E.g., 

• SATisfiability (SAT) solvers 

• Satisfiability Module Theory (SMT) solver 

• Mixed Integer Programming (MIP) solver

Bottom-up and Inductive: Fit data 
distributions well. 

• E.g.,  

• Perceptron 

• Support vector machine 

• Generative model

Machine Learning Automated Reasoning



Two Pillars in AI: Machine Learning and Automated Reasoning
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• Challenging in providing formal 
guarantees. 

• Hallucination: generated outputs are false 
or fabricated. 

• May violate constraints in rare and unseen 
situations.

• Rigid models: problem formulation 
must be agreed a-priori. 

• Difficult to adapt to evolving data 
distributions. 

• Cannot understand data like text and 
images.

Machine Learning Automated Reasoning



Machine Learning has intrinsic difficulty
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ChatGPT struggle with questions 
in logical reasoning and context 
comprehension.



Automated Reasoning has intrinsic difficulties
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Feasible variable assignment

Input (x1 ∨ x2) ∧ (¬x1 ∨ x3)

SATisfiability Solvers

• hard to encode data distribution.

• hard to handle complex input data, 
like 

• Millions of words in language 

• Millions of pixels in image



Bridging Machine Learning and Automated Reasoning is Crucial!
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Machine Learning

Structured prediction and scientific discovery problems are beyond the reach of 
machine learning and automated reasoning, when they are applied in isolation.

Automated Reasoning

Learn data distribution

Difficult to Provide formal guarantees

Good at 

Encode evolving data distribution

Feasible output



My Research: Integrate Learning with Reasoning
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The benefits are: 

• Formal guarantee of constraint 
satisfaction.

Machine Learning 
Models

Automated Reasoning 
Solvers• Scalability: Accelerate learning for 

higher-dimensional data.

Integration

Key insight: Embed diverse reasoning 
solvers as differentiable modules into 
neural networks.

Input data

feasible output



Scalability:  Integrate reasoning with learning to accelerate scientific 
discovery.

Jinzhao Li, Nan Jiang , et al. AAAI 2024. Nan Jiang et al. AAAI, 2023. Nan Jiang et al. JMLR, 2022. Nan 
Jiang et al., . UAI 2021. Maosen Zhang, Nan Jiang, et al. EMNLP 2020.

Formal guarantee: Integrate reasoning with learning to ensure constraint 
satisfaction for structured prediction.1

2

Outline

Future work3



Example 1: Delivery Route Planning
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Task: Recommend routes that 
• satisfy delivery requests;  
• meet agent’ implicit preferences. 

Historical Dataset: 

• Input:  

• Output: . 

{market, park, school}
market → park → school

Difficult to Always satisfy delivery requests

Machine Learning  (e.g., Transformer)

Good at Learn agent’ preferences

Extract and encode implicit preferences

Reasoning Solvers 
(e.g., traveling salesman problem solver)
Generate a feasible route

Nan Jiang et al., Constraint Reasoning Embedded Structured Prediction. JMLR, 2022.

market

park

school



10

Our integrated system (neural network + reasoning solver): 

• Neural network: Learn agent’ implicit preferences. 

• Reasoning solver: Satisfy delivery requests. 

Example 1: Delivery Route Planning
market

park

school

Task: Recommend routes that 
• satisfy delivery requests;  
• meet agent’ implicit preferences. 

Historical Dataset: 

• Input:  

• Output: . 

{market, park, school}
market → park → school

Nan Jiang et al., JMLR, 2022.



Task: predict a SQL program that 
• Understand user query in natural language; 
• The program is executable.

Example 2: Code generation from language

SELECT COUNT “School” WHERE “No.”    =      “3”

Player No. Position School
0 Antonio 21 Guard-Forward Duke
1 Voshon 2 Guard Minnesota
2 Marin 3 Guard-Forward Butler CC

Output SQL Query:

Input Query:
How many schools did player number 3 play at?

Input Table:

agg-op sel-col cond-col cond-valcond-op
SELECT COUNT “School” WHERE “No.”    =      “3”

Player No. Position School
0 Antonio 21 Guard-Forward Duke
1 Voshon 2 Guard Minnesota
2 Marin 3 Guard-Forward Butler CC

Output SQL Query:

Input Query:
How many schools did player number 3 play at?

Input Table:

agg-op sel-col cond-col cond-valcond-op
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Always generate executable SQL queryDifficult to

Machine Learning  
(i.e., Transformer)

Goot at understand the natural language

understand the natural language

Reasoning Solver 
(i.e, SQL grammar engine)
Generate executable SQL query

Nan Jiang et al., JMLR, 2022.

SELECT COUNT “School” WHERE “No.”    =      “3”

Player No. Position School
0 Antonio 21 Guard-Forward Duke
1 Voshon 2 Guard Minnesota
2 Marin 3 Guard-Forward Butler CC

Output SQL Query:

Input Query:
How many schools did player number 3 play at?

Input Table:

agg-op sel-col cond-col cond-valcond-op



SELECT COUNT “School” WHERE “No.”    =      “3”

Player No. Position School
0 Antonio 21 Guard-Forward Duke
1 Voshon 2 Guard Minnesota
2 Marin 3 Guard-Forward Butler CC

Output SQL Query:

Input Query:
How many schools did player number 3 play at?

Input Table:

agg-op sel-col cond-col cond-valcond-op

Task: predict a SQL program that 
• Understand user query in natural language; 
• The program is executable.

SELECT COUNT “School” WHERE “No.”    =      “3”

Player No. Position School
0 Antonio 21 Guard-Forward Duke
1 Voshon 2 Guard Minnesota
2 Marin 3 Guard-Forward Butler CC

Output SQL Query:

Input Query:
How many schools did player number 3 play at?

Input Table:

agg-op sel-col cond-col cond-valcond-op
SELECT COUNT “School” WHERE “No.”    =      “3”

Player No. Position School
0 Antonio 21 Guard-Forward Duke
1 Voshon 2 Guard Minnesota
2 Marin 3 Guard-Forward Butler CC

Output SQL Query:

Input Query:
How many schools did player number 3 play at?

Input Table:

agg-op sel-col cond-col cond-valcond-op
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Our integrated system (neural network + reasoning solvers): 

• Neural network: understand the natural language; 

• Reasoning solver: satisfy the SQL grammar. 

Example 2: Code generation from language

Nan Jiang et al., JMLR, 2022.



Design principle of the integrated system
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s

u1 u4

/ 0.2 0.3
v2 v3v1

0.3 / 0.5
v1 v3v2

Decision 
Diagram

Decision 
DiagramAutomated Reasoning 

Solvers

Feasible output y

• Satisfy different 
types of constraints

Input xt

Recurrent 
Neural Network

Recurrent 
Neural Network

Input xt+1Input x

Machine Learning 
Models• Learn from data

• Differentiable
The gradient of loss w.r.t the parameters 

Extra steps Extra steps

Nan Jiang et al., JMLR, 2022.



Design principle of the integrated system
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Our solution:  
COnstraint REasoning embedded Structured 
Prediction (CORE-SP)

s

u1 u4

/ 0.2 0.3
v2 v3v1

0.3 / 0.5
v1 v3v2

Decision 
Diagram

Decision 
Diagram

Input xt

Recurrent 
Neural Network

Recurrent 
Neural Network

Input xt+1

Extra steps Extra steps

Nan Jiang et al., JMLR, 2022.



15

Input

(b) a path in MDD

Score 
vector

Softmax

Output

s

u1 u2

u3 u4 u5

v2 v3

v1 v2v3 v1

v1

t
v3 v2

(a) sequence-to-sequence model

0.1 0.2 0.3
v1 v2 v3

0.3 0.33 0.37
v1 v2 v3

h0

z1 = 0.4
y1 = v2

-0.1 0.2 0.1
v1 v2 v3

x1, x2, …, xT

0.28 0.38 0.34
v1 v2 v3

h1

z2 = 0.8
y2 = v3

-1 0 1
v1 v2 v3

0.1 0.24 0.66
v1 v2 v3

z3 = 0.2
y3 = v1

h2 h3
o1 o2 o3

Sequential Encoder

RNNRNNRNN
Sequential 
decoder

Compile constraints as Decision Diagram

Compilation: delete paths that violate constraints.

Three variables  takes values in .{y1, y2, y3} {v1, v2, v3}

Example decision diagram
Nan Jiang et al., JMLR, 2022.

y1 = v2

y3 = v1

y2 = v3Every path in the graph is a variable assignment.

Decision Diagram: represents feasible solutions to combinatorial optimization problem as 
a space-compact directed acyclic graph.

Extra heuristics: merge paths to reduce memory space.



Example Compilation: delete paths that violate constraints
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Example Compilation: delete paths that violate constraints
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Example Compilation: delete paths that violate constraints
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Example Compilation: delete paths that violate constraints
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An output from the sequential decoder corresponds to a path in the decision diagram.
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Neural net encodes data distribution; Decision diagram filters invalid predictions

Nan Jiang et al., JMLR, 2022.
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Execution step 1

Nan Jiang et al., JMLR, 2022.

At node s
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Execution step 1

Nan Jiang et al., JMLR, 2022.

At node s
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1st step output Pick an edge e(s, u1) = v2

Execution step 1

Nan Jiang et al., JMLR, 2022.
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At node u1

Execution step 2

Nan Jiang et al., JMLR, 2022.
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Execution step 2

Nan Jiang et al., JMLR, 2022.

At node u1
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2nd step output y2 = v3 Pick an edge e(u1, u4) = v3

Execution step 2

Nan Jiang et al., JMLR, 2022.
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At node u4

Execution step 3

Nan Jiang et al., JMLR, 2022.
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Execution step 3

Nan Jiang et al., JMLR, 2022.

At node u4
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3rd step output y3 = v1 Pick an edge e(u4, t) = v1

Execution step 3

Nan Jiang et al., JMLR, 2022.



Experimental evaluations
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Experiments: Delivery Route Planning

Valid Route (%)

The outputs generated from integrated 
method satisfy 100% of the constraints.

The outputs generated from pure neural 
networks scale poorly to problem size.

CORE-SP (Ours)

Task: Recommend routes that 
• satisfy delivery requests;  
• meet agent’ implicit preferences.

Nan Jiang et al., JMLR, 2022.
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Experiments: Delivery Route Planning

Nan Jiang et al., JMLR, 2022.

CORE-SP (Ours)

The training objective of our CORE-SP 
is more stable.

Reward-based Objective

Task: Recommend routes that 
• satisfy delivery requests;  
• meet agent’ implicit preferences.
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Experiments: code generation from language

Easy Hard
Testing Set

Valid SQL (%)

100

85

80

90

95

Baseline
CORE-SP (Ours)

Our CORE-SP output SQL satisfying 
100% of the constraints.

100%100%

83%

94% The baseline predict more invalid SQL 
when evaluated on harder dataset.

Task: predict a SQL program that 
• Understand user query in natural language. 
• The program is executable.

Nan Jiang et al., JMLR, 2022.
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58%
61%

Easy Hard
Testing Set

Accuracy (%)
70

60

55

65

Experiments: code generation from language

Baseline
CORE-SP (Ours)

Task: predict a SQL program that 
• Understand user query in natural language. 
• The program is executable.

Nan Jiang et al., JMLR, 2022.

62%
65%

Model with reasoning attains a 
higher accuracy than the model 
without.

4%

4%
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IFTTT data Zaiper data
Testing Set

Valid progam (%)

100

85

80

90

95

Baseline
CORE-SP (Ours)

The structures generated from our CORE-
SP satisfy 100% of the constraints.

100%100%

88%87%

~12% of the predictions from the baseline 
violate the constraints.

Experiments: code generation from language
Task: predict a web-service program that 

• Understand user query in natural language. 
• The program is executable.

Nan Jiang et al., JMLR, 2022.
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32%

42%

IFTTT data Zaiper data

Accuracy (%)
44

35

30

40

Experiments: code generation from language

Baseline
CORE-SP (Ours)

Task: predict a web-service program that 
• Understand user query in natural language. 
• The program is executable.

Nan Jiang et al., JMLR, 2022.

34%

44% Model with reasoning attains a 
higher accuracy than the model 
without.2%

2%

Testing Set
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Input x

Neural Network  
Models

Nan Jiang et al., Learning Markov Random Fields for Combinatorial Structures via Sampling through Lovász Local Lemma. 
AAAI, 2023.

Enforce constraints via  
Lovasz Local Lemma Theory

Feasible output y

A highly-efficient theory-
guided sampler

CNF-SAT Logical constraint, 
i.e., 

C =
c1

(x1 ∨ x2) ∧
c2

(¬x1 ∨ x3)

Design principle of the integrated system  
For logical constraints satisfying “extreme conditions”



The Background on Lovasz Local Lemma
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Given:   
• Boolean variables , with . 

• CNF-SAT logical constraints, i,e., .

Output: 


A valid sample from distribution  subject to 
constraints .

X = (x1, x2, …, xn) xi ∈ {0,1}

C =
c1

(x1 ∨ x2) ∧
c2

(¬x1 ∨ x3)

P(X1)…P(Xn)
C

1973

2019

An existence proof by Erdos and Lovasz. Algorithmic-LLL by Moser and Tardos. 
[Journal of ACM]

A probabilistic analysis by Guo et al. [Journal of ACM]
2010

Nan Jiang et al., AAAI, 2023.

1. Transform into matrix 
computation.  
2. embed into neural 
network.



Sampling through Lovasz Local Lemma

39

Inputs:  Discrete variables , with . 
Marginal distribution: ;


Constraints: 


Output: A valid sample from distribution  subject to constraints .


X = {Xi}n
i=1 Xi ∈ {0,1}

P(X1), P(X2), P(X3)

C =
c1

(x1 ∨ x2) ∧
c2

(¬x1 ∨ x3)

P(X1)P(X2)P(X3) C

1 0 0
 is violated c2

X1 X2 X3



Sampling through Lovasz Local Lemma
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1 0 0
0 0 1

Resample  from  X1, X3 P(X1), P(X3)

X1 X2 X3

Inputs:  Discrete variables , with . 
Marginal distribution: ;


Constraints: 


Output: A valid sample from distribution  subject to constraints .


X = {Xi}n
i=1 Xi ∈ {0,1}

P(X1), P(X2), P(X3)

C =
c1

(x1 ∨ x2) ∧
c2

(¬x1 ∨ x3)

P(X1)P(X2)P(X3) C



Sampling through Lovasz Local Lemma
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1 0 0
0 0 1

 is violated c1

X1 X2 X3

Inputs:  Discrete variables , with . 
Marginal distribution: ;


Constraints: 


Output: A valid sample from distribution  subject to constraints .


X = {Xi}n
i=1 Xi ∈ {0,1}

P(X1), P(X2), P(X3)

C =
c1

(x1 ∨ x2) ∧
c2

(¬x1 ∨ x3)

P(X1)P(X2)P(X3) C



Sampling through Lovasz Local Lemma
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1 0 0
0 0 1
0 1 1

Resample  from X1, X2 P(X1), P(X2)

X1 X2 X3

Inputs:  Discrete variables , with . 
Marginal distribution: ;


Constraints: 


Output: A valid sample from distribution  subject to constraints .


X = {Xi}n
i=1 Xi ∈ {0,1}

P(X1), P(X2), P(X3)

C =
c1

(x1 ∨ x2) ∧
c2

(¬x1 ∨ x3)

P(X1)P(X2)P(X3) C



Sampling through Lovasz Local Lemma
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1 0 0
0 0 1
0 1 1All constraints are satisfied!

X1 X2 X3

Our contribution: we formulate a fully-differentiable and efficient neural network modules that 
simulates sampling through Lovasz Local Lemma.

Inputs:  Discrete variables , with . 
Marginal distribution: ;


Constraints: 


Output: A valid sample from distribution  subject to constraints .


X = {Xi}n
i=1 Xi ∈ {0,1}

P(X1), P(X2), P(X3)

C =
c1

(x1 ∨ x2) ∧
c2

(¬x1 ∨ x3)

P(X1)P(X2)P(X3) C
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Input x1, x2, x3

Neural Network  
Models

constraint reasoning sampler

Output: feasible variable assignment 
 x1 = True, x2 = False, x3 = True

Logical constraint, i.e.,  

C =
c1

(x1 ∨ x2) ∧
c2

(¬x1 ∨ x3)

Design principle of the integrated system  
For logical constraints satisfying “extreme conditions”

Markov random field

Lovasz Local Lemma-
based Sampler



Experiments: Random K-SAT Solutions with Implicit Preference
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10.0 12.5 15.0 17.5 20.0
Problem size of Random K-SAT

100

101

102

E
m

p
ir
ic

al
R

u
n
n
in

g
T

im
e

(s
)

Nelson (ours)

CMSGen

QuickSampler

UniGen

KUS
Our method is much faster than existing 
methods.

Nan Jiang et al., AAAI, 2023.

Task: sample feasible output from the model.



Experiments: Random K-SAT Solutions with Implicit Preference
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Our method always sample feasible 
output from the model.

Nan Jiang et al., AAAI, 2023.

Task: sample feasible output from the model.



Input x

Neural Network Models

Enforce constraints via  
pruned tree search

Feasible output y

The constraints can be binary-valued 
or real-valued.

Maosen Zhang, Nan Jiang, et al. Language Generation via Combinatorial Constraint Satisfaction: A Tree Search Enhanced 
Monte-Carlo Approach. EMNLP 2020.

Suited for Large Language Model, i.e., GPT 
model.

Design principle of the integrated system: 
For a mixture of binary- and real-valued constraints



(3) Controllable Text Generation with Constrained Tree Search
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Our method



Formal guarantee: Integrate reasoning with learning to ensure constraint 
satisfaction for structured prediction.1

Scalability: Integrate reasoning with learning to accelerate scientific 
discovery.2

Outline

Future work3

Nan Jiang et al. AAAI 2025; Nan Jiang et al. AAAI 2024; Nan Jiang et al. IJCAI 2024. Nan Jiang et al. 
RLJ, 2024; Nan Jiang et al., ECML, 2022; Nan Jiang et al., WWW 2022.



Symbolic Regression: An Important Task in Scientific Discovery

Kepler discovered laws of planetary motion Avogadro found the idea gas law

Goal: discover new physical knowledge from data.

Machine is much faster! 
Symbolic regression uses machine learning to advance the discovery of more complex 
physical phenomena.

Scientist-based discovery is slow.

50



Background on Symbolic Regression in Scientific Discovery

Best symbolic equation is 
.x1 × x2 − x3/x4

Goal: discover new physical knowledge from data.

Experimental Data

0.2 0.4 0.2 0.7 -0.24
0.9 0.3 0.5 0.5 0.30
0.5 0.4 0.8 0.1 0.36
0.1 0.8 0.7 0.6 -0.41

 x1  x2  x3  y x4

Given: 

• Experimental data 

• a set of math operators, i.e., .  

Goal: 

Find a closed-form equation that best fits the data.

{ + , − , × , ÷ ,sin, exp}

Nan Jiang et al., ECML2022; IJCAI 2024; AAAI2024; AAAI2025.

Symbolic regression 
method

51



Existing works on scientific discovery and current challenges on scalability

2009

Generic programming 
 [science 2009]

BACON (Pat Langley & 
Herbert Simon)

Deep Reinforcement Learning [2019] 
Monte Carlo Tree Search [2020]

Pre-trained Transformer [2021] 
Large-language models [2024]

Current challenges on scalability 
• Struggle to solve equations with a few ( ) variables.  
• The space of expressions grows .

≤ 4
∝ exp(#input variables)

Nan Jiang et al., ECML2022; IJCAI 2024; AAAI2024; AAAI2025.

1979

52

20242019

…. …..



A running example of our idea

Can you guess which equation  
generates the data shown in the left table?

y = f(x1, x2, x3)

53

X1 X2 X3 Y
2.5 1.0 9.5 12
3.0 -1.0 4.0 1
1.6 3.5 5.2 10.8
1.8 1.0 3.2 5
7.1 8.6 3.8 64.9
1.7 1.0 2.3 4
2.5 2.6 3.1 9.6
8.9 1.1 2.0 11.8
4.2 -1.0 2.2 -2
5.8 1.0 7.2 13
1.6 5.7 1.2 10.3
9.7 -1.0 1.7 -8



How about if I only ask you to look into these rows?
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It could be y = x1 + x3

X1 X2 X3 Y

3.0 -1.0 4.0 1

4.2 -1.0 2.2 -2

9.7 -1.0 1.7 -8

A running example of our idea



How about these rows?
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It could be y = − x1 + x3

A running example

X1 X2 X3 Y
2.5 1.0 9.5 12

1.8 1.0 3.2 5

1.7 1.0 2.3 4

5.8 1.0 7.2 13



Based on the discovered expressions: 

 

 

The true expression could be: 

y = x1 + x3

y = − x1 + x3

56

X1 X2 X3 Y
2.5 1.0 9.5 12
3.0 -1.0 4.0 1

1.8 1.0 3.2 5

1.7 1.0 2.3 4

4.2 -1.0 2.2 -2
5.8 1.0 7.2 13

9.7 -1.0 1.7 -8

It could be y = x2x1 + x3

Red and blue data are from control variable 
experiments that X2 is controlled.

A running example



- In 1663, Robert Boyle found: 

  

where  and  are fixed.

PV = 𝚌𝚘𝚗𝚜𝚝
n T

- In 1787,  Jacques Charles demonstrated  

 

where only  is fixed. 

PV
T

= const

n

- In 1811, Amedeo Avagadro demonstrated 
PV
nT

= const

Image source: https://www.energy.gov/

Relevant variables: 
• The amount of gas ( , moles), 
• Temperature ( ), 
• Pressure ( ), 
• Volume of gas ( ).

n
T

P
V

Idea: Inspired from idea gas law

Nan Jiang et al., ECML2022; IJCAI 2024; AAAI2024; AAAI2025. 57



- In 1663, Robert Boyle found: 

  

where  and  are fixed.

PV = 𝚌𝚘𝚗𝚜𝚝
n T

- In 1787,  Jacques Charles demonstrated  

 

where only  is fixed. 

PV
T

= const

n

- In 1811, Amedeo Avagadro demonstrated 
PV
nT

= const

Idea: Inspired from idea gas law

Nan Jiang et al., ECML2022; IJCAI 2024; AAAI2024; AAAI2025.

We call this iterative process of doing 
control variable experiments as Scientific 
Reasoning: 

Step 1.  and  are fixed. 

Step 2. only  is fixed. 
Step 3. No variable is fixed.

n T
n

58



Design principle of the integrated system

• Search for optimal equation that 
matches the data

59

Input: experimental data

Symbolic regression 
methods

Scientific reasoning

Output: best fitted equation

• determine the hypothesis and 
conduct controlled experiments



Design Principle Scientific Reasoning embedded Symbolic regression
Build the expression from simple to complex, using scientific reasoning.

Nan Jiang et al., ECML2022; IJCAI 2024; AAAI2024; AAAI2025.

 x1  x2  x3  y x4  x1  x2  x3  y x4  x1  x2  x3  y x4

(d) no control(b) control x3, x4 (c) control x4

× ×

x1 x3 x2 x4

−

 x1  x2  x3  y x4

M
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le

 T
ria
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a

(a) control x2, x3, x4

Be
st

 E
xp

re
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io
n 

Tr
ee

×

x1

−

C1

C2

0.3 0.5 0.1 0.7 -0.32
0.6 0.5 0.1 0.7 -0.29
0.2 0.5 0.1 0.7 -0.33
0.9 0.5 0.1 0.7 -0.26

 x1  x2  x3  y x4

×

x1

−

C1 C2

×

x2 C1

× ×

x1 x3 x2

−

0.6 0.1 0.8 0.4 0.44
0.4 0.9 0.8 0.4 0.04
0.3 0.2 0.8 0.4 0.16
0.7 0.4 0.8 0.4 0.40

 x1  x2  x3  y x4
0.7 0.8 0.1 0.2 -0.09
0.5 0.4 0.6 0.2 0.22
0.2 0.1 0.9 0.2 0.16
0.3 0.5 0.1 0.2 -0.07

 x1  x2  x3  y x4
0.2 0.4 0.2 0.7 -0.24
0.9 0.3 0.5 0.5 0.30
0.5 0.4 0.8 0.1 0.36
0.1 0.8 0.7 0.6 -0.41

 x1  x2  x3  y x4

• Assumption: need a data oracle that can return the controlled variables data.

60



Execution step 1

 x1  x2  x3  y x4  x1  x2  x3  y x4  x1  x2  x3  y x4
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0.3 0.5 0.1 0.7 -0.32
0.6 0.5 0.1 0.7 -0.29
0.2 0.5 0.1 0.7 -0.33
0.9 0.5 0.1 0.7 -0.26

 x1  x2  x3  y x4

×

x1

−

C1 C2

×

x2 C1

× ×

x1 x3 x2

−

0.6 0.1 0.8 0.4 0.44
0.4 0.9 0.8 0.4 0.04
0.3 0.2 0.8 0.4 0.16
0.7 0.4 0.8 0.4 0.40

 x1  x2  x3  y x4
0.7 0.8 0.1 0.2 -0.09
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Our method works with many existing symbolic 
regression methods: like GP, DRL, MCTS, LLM!

Execution step 4
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Scientific Reasoning brings an exponential reduction of the search space for a class of 
equations

There exists a family of symbolic expression  of  nodes, ϕ (4m − 1)

65

One example: .(x1 + x2)(x3 + x4)…(x2m−1 + x2m)

• Classic symbolic regression following the simple to complex search order has 
to explore a search space whose size is  to find the expression.O(em)

• Our scientific reasoning following the simple to complex order expands  search 
spaces.

O(m)

Nan Jiang et al., ECML2022; IJCAI 2024; AAAI2024; AAAI2025.



Experiments on large-scale algebraic equation dataset

66

Total variables
Methods 10 20 30 40 50

Monte Carlo Tree Search 0.386 0.554 0.554 0.714 0.815
Genetic Programming 0.159 0.172 0.218 0.229 0.517

Deep RL with risk-seeking policy gradient 0.284 0.521 0.522 0.66 0.719
Deep RL with vanilla policy gradient 0.415 0.695 0.726 0.726 0.779
Deep RL with priority queue training 0.384 0.488 0.615 0.62 0.594

Our method 1E-06 1E-06 1E-06 0.002 0.021

Our method successfully scales up to dataset with 50 variable due to scientific reasoning.

Benchmark on Normalized Mean-squared error metric.

Nan Jiang et al., ECML2022; IJCAI 2024; AAAI2024; AAAI2025.



Use scientific reasoning to find the governing PDE for nano voids

Nan Jiang, Nasim Md, Yexiang Xue. Vertical AI-driven Scientific Discovery. Poster at 1st Science Understanding through Data Science Conference 2024.

Computer Vision Annotation

Nanovoid evolution video

Annotated voids moving over time

Reasoning the governing PDE

The growth and movement of nanoscale voids  
(tiny cavities) in copper. 

It enables scientific discovery on nano voids size fluctuation 
(nasim et al., Journal of Nuclear Materials 2022).
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The benefits are: 

• Formal guarantee on Constraint 
satisfaction.

Machine Learning 
Models

Automated Reasoning 
Solvers• Scalablilty: Accelerate learning for 

higher-dimensional data.

Integration

feasible output

Takeaway Input



Scalability:  
Reasoning with learning to accelerate scientific discovery.

Verifiability:  
Reasoning with learning to ensure constraint satisfaction for structured prediction.1

2

Outline

Future work3
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Thrust 1: Embed Reasoning in learning for accelerating scientific 
discovery

Discover knowledge for extensive scientific problems, like:

What is the governing dynamics in those physical phenomena?

Time

• Spinnodal decomposition, like oil and 
water mixes.

In-situ 
TEM

Void Defect 
Evolution

Ground-truth
Model

Learned via 
Normal 
Schedule

Learned via 
Vertical 
Schedule

Time

(Left) (Right)

Time

• Dendritic solidification, like the growth of 
snow flake.
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Thrust 2 & 3: Formal Reasoning for Large Language Model

Combine intuitive and informal language description with formal 
reasoning (symbolic proofs, rule-based derivations) for verifiable 
and accurate prediction.

How to solve hard mathematical problems 
with large language model and symbolic 
solvers?

2d geometry problems
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Thrust 2 & 3: Formal Reasoning for Large Language Model

Combine intuitive and informal language description with formal 
reasoning (symbolic proofs, rule-based derivations) for verifiable 
and accurate prediction.

3d geometry problems

How to solve hard mathematical problems 
with large language model and symbolic 
solvers?
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Thrust 2 & 3: Formal Reasoning for Large Language Model

Combine intuitive and informal language description with formal 
reasoning (symbolic proofs, rule-based derivations) for verifiable 
and accurate prediction.

How to solve hard mathematical problems 
with large language model and symbolic 
solvers?

Theorem proving problems
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Thrust 2 & 3: Formal Reasoning for Large Language Model

Combine intuitive and informal language description with formal 
reasoning (symbolic proofs, rule-based derivations) for verifiable 
and accurate prediction.

What is the code implementation with a 
given text description of task? like

• competitive programming,

• efficient low-level execution code.

• Automatic program repair

• Automatic testing function generation



Q&A 
Nan Jiang, CS@Purdue 

https://jiangnanhugo.github.io
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