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Two Pillars in Al: Machine Learning and Automated Reasoning

/," =

l Machine Learnlng ‘

Bottom-up and Inductive: Fit data . Top-down and deductive: precise models
distributions well. from problem description.
. E.qQ, . E.Q,
. Perceptron . SATisfiability (SAT) solvers
. Support vector machine . Satisfiability Module Theory (SMT) solver
« Generative model . Mixed Integer Programming (MIP) solver
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Two Pillars in Al: Machine Learning and Automated Reasoning
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il Machine Learning

« Challenging in providing formal + Rigid models: problem formulation
guarantees. must be agreed a-priori.

» Hallucination: generated outputs are false  « Difficult to adapt to evolving data
or fabricated. distributions.

. May violate constraints in rare and unseen « Cannot understand data like text and
situations. Images.



Machine Learning has intrinsic difficulty

q Mike's mum had 4 kids: 3 of them are
Luis, Drake and Matilda. What is the name
of 4th kid?

ChatGPT struggle with questions
in logical reasoning and context
comprehension.

pssible to determine the

he fourth child without

r FINANCIAL TIMES
Yann LeCun, chief Al scientist at the social media giant that owns Facebook

and Instagram, said LLMs had “very limited understanding of logic. .. do not
understand the physical world, do not have persistent memory, cannot reason

in any reasonable definition of the term and cannot plan. .. hierarchically”.

not possible to determine the name




Automated Reasoning has intrinsic difficulties

« hard to encode data distribution.

Input (x; V x,) A (7x; V X;3) « hard to handle complex input dataq,
like

. Millions of words in langua

2y o iyt

Nagloiratin.
i bt
ok i

Feasible variable assignment



Bridging Machine Learning and Automated Reasoning is Crucial!

S

Good at Learn data distribution Feasible output

Difficult to  Provide formal guarantees Encode evolving data distribution

— - [ —— I — ___ __ — —— P — — — SE——— S———— B — e —————=

Structured prediction and scientific discovery problems are beyond the reach of
machine learning and automated reasoning, when they are applied in isolation.




My Research: Integrate Learning with Reasoning

. . . Input data
Key insight: Embed diverse reasoning — P — — —
solvers as differentiable modules into | —
neural networks. | | Machine Learning
Models
The benefits are: I

« Formal guarantee of constraint
satisfaction.

Automated Reasoning

feasible output

 Scalability: Accelerate learning for
higher-dimensional data.



Qutline

" .\ Formal guarantee: Integrate reasoning with learning to ensure constraint
_J satisfaction for structured prediction.

Jinzhao Li, Nan Jiang, et al. AAAI 2024. Nan Jiang et al. AAAI, 2023. Nan Jiang et al. JMLR, 2022. Nan
Jiang et al., . UAI 2021. Maosen Zhang, Nan Jiang, et al. EMNLP 2020.

" _ "\ Scalability: Integrate reasoning with learning to accelerate scientific
_J discovery.

? Future work



IIIIIIIIII
FARM

Task: Recommend routes that
. satisfy delivery requests;
. meet agent’ implicit preferences.

Historical Dataset:

. Input: {market, park, school}

» Output: market — park — school.

Reasoning Solvers
(e.g.. traveling salesman problem solver)

Good at Learn agent’ preferences Generate a feasible route

Machine Learning (e.g., Transformer)

Difficult to  Always satisfy delivery requests Extract and encode implicit preferences

Nan Jiang et al,, Constraint Reasoning Embedded Structured Prediction. JMLR, 2022.



Example 1. Delivery Route Planning

IIIIIIIIII
FARM

Task: Recommend routes that
. satisfy delivery requests;
. meet agent’ implicit preferences.

Historical Dataset:

. Input: {market, park, school}

» Output: market — park — school.

Our integrated system (neural network + reasoning solver):
« Neural network: Learn agent’ implicit preferences.

« Reasoning solver: Satisfy delivery requests.

Nan Jiang et al.,, JMLR, 2022. 10



Example 2: Code generation from language

Task: predict a SQL program that
« Understand user query in natural language;
. The program is executable.

Input Query:
How many schools did player number 3 play at?

Output SQL Query:
SELECT COUNT “School” WHERE "No.” = "3

Machine Learning
(i.e.. Transformer)

Goot at understand the natural language

Difficult to  Always generate executable SQL query

Nan Jiang et al.,, JMLR, 2022.

Input Table:

Player | No. Position School
O | Antonio | 21 | Guard-Forward Duke
1 | Voshon | 2 Guard Minnesota

2 Marin 3 | Guard-Forward | Butler CC

Reasoning Solver
(i.e, SQL grammar engine)

Generate executable SQL query

understand the natural language

11



Example 2: Code generation from language

Task: predict a SQL program that

Input Table:
« Understand user query in natural language;
. The program is executable. Player | No. Position School
O | Antonio | 21 | Guard-Forward Duke

Input Query: 1 | Voshon | 2 Guard Minnesota

How many schools did player number 3 play at? 2 | Marin | 3 | Guard-Forward | Butler CC
Output SQL Query:

SELECT COUNT “School” WHERE "No.” = "3’

Our integrated system (neural network + reasoning solvers):
« Neural network: understand the natural language;

« Reasoning solver: satisfy the SQL grammar.

Nan Jiang et al.,, JMLR, 2022.

12



Design principle of the integrated system

Input x Input x, Input x,_ 4

l & e (/” e
[
| |

? Recu rrent R
Recurrent ,‘

Neural Networ " Neural Network |

s,| Dectsion | Decision

« Learn from data

Automated Reasoning
Solvers *

» Satisfy different
types of constraints

Feasible output y

Extra steps Extra steps

. Differentiable
The gradient of loss w.rt the parameters

Nan Jiang et al.,, JMLR, 2022.



Design principle of the integrated system

Inpijt X, Input X, ;
R rrent ]l Recurrent B
ecurre é‘ S

\Neural Network | | Neural

»

Our solution: - l, l
COnstraint REasoning embedded Structured s | Decision | | Decision

Prediction (CORE-SP) Dlagram i{‘
V3
0.3

Extra steps Extra steps

Nan Jiang et al.,, JMLR, 2022. 14



Compile constraints as Decision Diagram

Decision Diagram: represents feasible solutions to combinatorial optimization problem as
a space-compact directed acyclic graph.

Three variables {y;, y,, y;} takes values in {v, v,, V1 }.
Every path in the graph is a variable assignment.

Compilation: delete paths that violate constraints.

Extra heuristics: merge paths to reduce memory space.

Example decision diagram

Nan Jiang et al.,, JMLR, 2022.
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Example Compilation: delete paths that violate constraints

(a) width-1 MDD

16



Example Compilation: delete paths that violate constraints

(a) width-1 MDD (b) split node

17



Example Compilation: delete paths that violate constraints

(a) width-1 MDD (b) split node (c) filter edges

18



Example Compilation: delete paths that violate constraints

(a) width-1 MDD (b) split node (c) filter edges (d) width-2 MDD

19



Neural net encodes data distribution; Decision diagram filters invalid predictions

An output from the sequential decoder corresponds to a path in the decision diagram.

X1s X9y eoey X

Input
Neural Network Encoder D
! o o
’ | |
Softmax | L | Y2 | V3 Vi | V2 V3 V1| Vo] Vs

---------------- 03 | 03 | 04 02 03 | 05 01 | 03 | 0.6

NS gnpled | | |

output Y1 =W Yo = V3 Y3 =V

Nan Jiang et al.,, JMLR, 2022.
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Execution step 1

X1s X9y eoes X

L Neural Network Encoder 3 V) V3

|
—{ RNN } R @
|

S D.eC|S|on
diagram

l

Input

At node s

Nan Jiang et al.,, JMLR, 2022. 21



Execution step 1

X1, xz,J[. .

L Neural Network Encoder 3 V) V3

|
—{ RNN } S @
|

S D.eC|S|on
l diagram l
|

Vs V3
1 0.3 0.4

Input

At node s

Nan Jiang et al.,, JMLR, 2022. 22



Execution step 1

X1 Xps «ees X

T 2 -
L Neural Network Encoder 5 V) V3

!
(@) &
!

S D.eC|S|on
diagram

Input

Softmax X Vo | V3
ru. 0.3 04
Sampled l
output Y1 =V,

1st step output Pick an edge e(s, u;) = v,

Nan Jiang et al.,, JMLR, 2022. 23



Execution step 2

X15X5s o ooy X

Input |
l\' Neural Network Encoder i
o S
Hi‘ RNN ! >l RNN ’ >
o o
S | Decision Uq Decision
diagram “diagram
l /
Softmax: Vo | V3 f
"""""""" 49 0.3 O./4/
Sampled ! y
output Y1 =W

At node u

Nan Jiang et al,, JMLR, 2022. 24



Execution step 2

Input X1s Xy eues X7

: - Neural Network Encoder ;

| |
' RNN >§RNN )
|

DeC|S|on Uq Decnsmn
“diagram dlagram

Softmax "2 % ¢ '3
. 0.3 0/4 0.2 N 05
Sampled ! y
output Y1 =W

Nan Jiang et al,, JMLR, 2022. 25

At node u



Execution step 2

Input X1s Xy ves Xy

| v Neqrol Network Encoder 9

T ]

s | Decision U ' Decision
diagram diagram
| / l
| 4 v, [ v v (N Vs
Softmax /
% 0.3 O./4 0.2 N2 05

Sampled ' ! y |
output Y1 =WV Y2 = V3

2nd step output y, = v,

Nan Jiang et al,, JMLR, 2022. 26

Pick an edge e(u, u;) = v,



Execution step 3

nput xl,x2,¢...,xT
L Neuﬁral Network Encoder ) 1)
1 T T @
o o
Si Decision U| Decision
“diagram “diagram
o, /’ -
Softmax X 2o, X
. 0.3 O./4 0.2

Sampled l y
output Y1 =W

Decision

iy
“diagram
/
/

V3
V1
V3 0

o

At node u,

Nan Jiang et al,, JMLR, 2022. 27



Execution step 3

Input xl,xz,J/...,xT
L Neural Network Encoder i Vy
—| RNN ! >| RNN l RNN }—
V3

DeC|S|on Uy DeC|5|on u4 @
dlagram dlagrqm )
1
V2 3/ i V 0
03 | 047[] 02 | A0, 01

Sampled | y !
output Y1 =W Yo = V3

Decision
diagram

At node u,

Nan Jiang et al,, JMLR, 2022.



Execution step 3

X1s X9y eoes X

- J
'g_ Neural Network Encoder i
! !

!

Input

Decision
diagram

DeC|S|on Uuq DeC|5|on M4
dlagram dlagram
- v _

Va 3/ V1
0.3 O./4 0.2

Sampled !
output Y1 =WV

01

/

3rd step output y; = v

Nan Jiang et al,, JMLR, 2022.

Pick an edge e(uy, ) = v,

29



Experimental evaluations



Experiments: Delivery Route Planning

Task: Recommend routes that
. satisfy delivery requests;

. meet agent’ implicit preferences.

Valid Route (%)

100 |
30T The outputs generated from integrated
—— CORE-SP (Ours) method satisfy 100% of the constraints.
60 ——cGAN + post process
——cGAN

40
The outputs generated from pure neural

20 networks scale poorly to problem size.

2 4 6 3 10
Number of Maximum Locations (T)

Nan Jiang et al.,, JMLR, 2022.
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Experiments: Delivery Route Planning

Task: Recommend routes that
. satisfy delivery requests;

Reward-based Objective . meet agent’ implicit preferences.
1.0 “ 1=0
MY’ f-
- ‘w‘ﬂ' W,/
The training objective of our CORE-SP
0.6 " | | | | L IS more stable.

0 10 20 30 40 o0

Traming iterations
“CGAN + post process 2 CORE-SP (Ours) ‘

Nan Jiang et al.,, JMLR, 2022. 32



Experiments: code generation from language

Task: predict a SQL program that
« Understand user query in natural language.

| « The program is executable.
B Baseline

Valid SQL (%) CORE-SP (Ours)

g Our CORE-SP output SQL satisfying
 100% of the constraints.

The baseline predict more invalid SQL
= when evaluated on harder dataset.

Easy Hard
Testing Set

Nan Jiang et al.,, JMLR, 2022. 33



Experiments: code generation from language

Task: predict a SQL program that
« Understand user query in natural language.
« The program is executable.

B Baseline
mm CORE-SP (Ours)

Accuracy (%)

d——___ Model with reasoning attains a
higher accuracy than the model
without.

Easy Hard
Testing Set

Nan Jiang et al.,, JMLR, 2022. 34



Experiments: code generation from language

Task: predict a web-service program that
« Understand user query in natural language.

_ « The program is executable.
B Baseline

Valid progam (%) s CORE-SP (Ours)

100 é—___The structures generated from our CORE-
- - SP satisfy 100% of the constraints.
90
~12% of the predictions from the baseline
85 = violate the constraints.
IFTTT data Zaiper data
Testing Set

Nan Jiang et al., JMLR, 2022. 35



Experiments: code generation from language

Task: predict a web-service program that
« Understand user query in natural language.
EE Baseline « The program is executable.
Accuracy (%)  mmm CORE-SP (Ours)
44 27%
L

40

~Model with reasoning attains a
~ higher accuracy than the model

395 without.

30

IFTTT data Zaiper data

Testing Set
Nan Jiang et al.,, JMLR, 2022. 36



Design principle of the integrated system
For logical constraints satisfying “extreme conditions”

Input X

/

| Neural Network "
Models

l.e.,

A highly-efficient theory- |
guided sampler

21 "

C - r(xl VX25Ar(ﬂxl VX35

Feasible output y

Nan Jiang et al., Learning Markov Random Fields for Combinatorial Structures via Sampling through Lovdasz Local Lemma.

AAAI, 2023.

CNF-SAT Logical constraint,

37



The Background on Lovasz Local Lemma

An existence proof by Erdos and Lovasz. Algorithmic-LLL by Moser and Tardos.
i [Journal of ACM] |

1973 2010 T

Given:

» Boolean variables X = (x, x5, ..., x,), with x; € {0,1}. ( |
1 € 1. Transform into matrix |

« CNF-SAT logical constraints, i,e., C = (xl Vv x25 A (ﬂxl V x35. \, |computation.
Output: "~ |2. embed into neural

network.
A valid sample from distribution P(X)...P(X,) subject to
constraints C.

Nan Jiang et al., AAAI, 2023. 38



Sampling through Lovasz Local Lemma

Discrete variables X = {X,}'_,, with X; € {0,1}.
Marginal distribution: P(X,), P(X,), P(X5);
¢ ¢

Constraints: C = (xl V xzj N\ r(‘l?ﬁ V x35

A valid sample from distribution P(X,)P(X,)P(X5) subject to constraints C.

C, is violated =

39



Sampling through Lovasz Local Lemma

Discrete variables X = {X,}'_,, with X; € {0,1}.
Marginal distribution: P(X,), P(X,), P(X5);
¢ ¢

Constraints: C = (xl V xzj N\ r(‘l?ﬁ V x35

A valid sample from distribution P(X,)P(X,)P(X5) subject to constraints C.

Xl X2 X3
1 0 0
Resample X, X5 from P(X,), P(X;)=$ 0 0 1

40



Sampling through Lovasz Local Lemma

Discrete variables X = {X,}'_,, with X; € {0,1}.
Marginal distribution: P(X,), P(X,), P(X5);
¢ ¢

Constraints: C = (xl V xzj N\ r(‘l?ﬁ V x35

A valid sample from distribution P(X,)P(X,)P(X5) subject to constraints C.

Xl X2 X3

1 0 0

o 0 0 1
C, Is violated =—g»

41



Sampling through Lovasz Local Lemma

Discrete variables X = {X,}'_,, with X; € {0,1}.
Marginal distribution: P(X,), P(X,), P(X5);
¢ ¢

Constraints: C = (xl V xzj N\ r(‘l?ﬁ V x35

A valid sample from distribution P(X,)P(X,)P(X5) subject to constraints C.

Xl X2 X3

1 0 0

|0 0 1

Resample X, X, from P(X), P(X,) =¥ 0 1 1




Sampling through Lovasz Local Lemma

Inputs: Discrete variables X = {X;}_,, with X; € {0,1}.
Marginal distribution: P(X,), P(X,), P(X5);
C Cy

Constraints: C = (xl \4 xzj N r(—'xl \4 x35

Output: A valid sample from distribution P(X;)P(X,)P(X5) subject to constraints C.

X X5 X3

1 0 0

0 0 1
All constraints are satisfied! .. g, 0 1 1

Our contribution: we formulate a fully-differentiable and efficient neural network modules that
simulates sampling through Lovasz Local Lemma.

43



Design principle of the integrated system
For logical constraints satisfying “extreme conditions”

Input X, X5, X3

. | Neural Netw )
Markov random field |
| Models

Lovasz Local Lemma-
based Sampler

Output: feasible variable assignment
x; = True, x, = False, x; = True

Logical constraint, i.e.,
€ &)

C - r(xl V.X2)‘/\r(_'xl VX35

44



Experiments: Random K-SAT Solutions with Implicit Preference

Task: sample feasible output from the model.

| —e— Nelson (ours)
£ 10° =4 CMSGen
<)
j= QuickSampler
Eo UniGen
g —rp— |
= 10! - Our method is much faster than existing
E =T - methods.
S A =/ N /
5
=
m —
100-_ "‘—‘/‘

10.0 12.5 15.0 17.5 20.0
Problem size of Random K-SAT

Nan Jiang et al., AAAI, 2023.



Experiments: Random K-SAT Solutions with Implicit Preference

1 OO% = A ———— -A*)‘A*'*A i a K A I < I ok 4 ‘A*A‘:*f“* Ak
< 80% - |
5
c  60% -

C
2 —&— Nelson (ouxs)
S 40% 1 —an.
< A - CMSGen
g
= QuickSamplet
>  20% - .
UniGen
—k=—KUS
0% -
10? 102 103

Problem size of Random K-SAT

Nan Jiang et al., AAAI, 2023.

Task: sample feasible output from the model.

Our method always sample feasible
output from the model.

46



Design principle of the integrated system:
For a mixture of binary- and real-valued constraints

Suited for Large Language Model|, i.e., GPT

model. GPT-3
The constraints can be binary-valued | Enforce constraints via
or real-valued. ‘ pruned tree search

Feasible output y

Maosen Zhang, Nan Jiang, et al. Language Generation via Combinatorial Constraint Satisfaction: A Tree Search Enhanced
Monte-Carlo Approach. EMNLP 2020.



(3) Controllable Text Generation with Constrained Tree Search

“NeuroLogic A*esque Decoding: Constrained Text

Generation with Lookahead Heuristics”

Ximing Lu, Sean Welleck, Peter West, Liwei Jiang, Jungo Kasai, Daniel
Khashabi, Ronan Le Bras, Lianhui Qin, Youngjae Yu, Rowan Zellers, Noah
Smith, Yejin Choi

Best new method paper

Notes from the Best Paper Committee: Language generation is, in its
simplest form, a search problem in very high dimensional space. This paper
makes that connection clear by incorporating the classic search algorithm
A* into the language generation process. A* allows for a heuristic search
that incorporates “lookahead"” signals of future performance into token
selection. The authors perform a very thorough evaluation of their model
across many tasks including question generation, machine translation, and
story generation. They show large performance improvements over the

O ur m et h Od typlc?l beam ‘search a!oproa?ch, .a.nd Oerr their original NeuroLogic
algorithm. This paper is an inspiring mixture of old and new.

Decode Method Automatic Evaluation Human Evaluation
1 ROUGE BLEU METEOR CIDEr SPICE Coverage | Grammar Fluency Meaningfulness Overall
437 CGMH (Miao et al., 2019) 28.8 2.0 18.0 5.5 21.5 18.3 2.28 2.34 2.11 2.02
% TSMH (Zhang et al., 2020) 420 43 25.9 104 377 927 2.35 2.28 2.37 2.22
NEUROLOGIC (Lu et al., 2021) 38.8 11.2 24.5 18.0 41.7 90.6 2.78 2.71 2.49 2.51
NEUROLOGICX (greedy) 43.7 14.7 28.0 20.9 47.7 100.0 2.83 2.77 2.74 2.76
NEUROLOGIC* (beam) 429 144 27.8 203 469  100.0 2.81 2.86 2.76 2.75
NEUROLOGIC* (sample) 435 146 282 20.8 478  100.0 2.83 2.75 2.76 2.73

Table 8: Performance of different unsupervised decoding algorithms on interrogative question generation.

48



Qutline

[ satisfaction for structured prediction.

" _ " Scalability: Integrate reasoning with learning to accelerate scientific
_J discovery.

Nan Jiang et al. AAAI 2025; Nan Jiang et al. AAAI 2024; Nan Jiang et al. IJCAI 2024. Nan Jiang et al.
RLJ, 2024; Nan Jiang et al., ECML, 2022; Nan Jiang et al., WWW 2022.

> Future work



Symbolic Regression: An Important Task in Scientific Discovery

Goal: discover new physical knowledge from data.

Scientist-based discovery is slow.

The Mole &
Avogadro's Constant

Kepler discovered laws of planetary motion Avogadro found the idea gas law

Machine is much faster!

Symbolic regression uses machine learning to advance the discovery of more complex
physical phenomena.

50



Background on Symbolic Regression in Scientific Discovery

Experimental Data
A X A3 N4 Yy
0.2 04 0.2 0.7 -024

09 03 05 05 0.30
05 04 08 0.1 0.36

Goal: discover new physical knowledge from data.

Given: 01 08 0.7 06 -041
. Experimental data l L
. a set of math operators,ie.,{ +, —, X, < ,sin,exp}. ~ Symbolic regression
* method
Goal: -
Find a closed-form equation that best fits the data. ‘l'

Best symbolic equation is
.xl X Xz — X3/X4.

Nan Jiang et al.,, ECML2022; IJCAI 2024; AAAI2024; AAAI2025. 51



Existing works on scientific discovery and current challenges on scalability

BACON (Pat Langley & Generic programming Pre-trained Transformer [2021]
Herbert Simon) [science 2009] Large-language models [2(?4]
Deep Reinforcement Learning [2019]
Monte Carlo Tree Search [2020]

. “Current challenges on scalability |
. Struggle to solve equations with a few ( < 4) variables.
.« The space of expressions grows « exp(#input variables). ‘

Nan Jiang et al.,, ECML2022; IJCAI 2024; AAAI2024; AAAI2025.
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X1 X2 X3 Y
2.5 1.0 9.5 12
3.0 -1.0 4.0 1
1.6 3.5 5.2 10.8
1.8 1.0 3.2 5
7.1 8.6 3.8 64.9
1.7 1.0 2.3 4
2.5 2.6 3.1 9.6
8.9 1.1 2.0 11.8
4.2 -1.0 2.2 -2
5.8 1.0 [.2 13
1.6 5.7 1.2 10.3
9.7 -1.0 1.7 -8

A running example of our idea

Can you guess which equation y = f(xy, x,, x3)
generates the data shown in the left table?

53



A running example of our idea

X1 Xo X3 Y
3.0 -1.0 4.0 1
4.2 -1.0 2.2 -2
9.7 -1.0 1.7 -8

How about if | only ask you to look into these rows?

It could bey = x; + x5

54



A running example

X1 Xo X3 Y
2.5 1.0 9.5 12
1.8 1.0 3.2 5
1.7 1.0 2.3 4
5.8 1.0 7.2 13

How about these rows?

It could bey = — x; + x3

55



2.5 1.0 9.5

3.0 -1.0 4.0 1
1.8 1.0 3.2 5
1.7 1.0 2.3 4
4.2 -1.0 2.2 -2
5.8 1.0 [.2 13
9.7 -1.0 1.7 -8

Based on the discovered expressions:

Yy =X+ X3
y= =X TX

The true expression could be:

It could be y = x,x; + x5

56



ldea: Inspired from idea gas law

Pressure

- In 1663, Robert Boyle found:
PV = const

where n and 1 are fixed.

-In 1787, Jacques Charles demonstrated

PV
—— = const

I

where only 7 is fixed. Relevant variables:

. The amount of gas (1, moles),
- In 1811, Amedeo Avagadro demonstrated

PV
nl

. Temperature (7),
— const . Pressure (P),

. Volume of gas (V).

Nan Jiang et al., ECML2022; IJCAI 2024; AAAI2024; AAAI2025. Image source: https://www.energy.gov/ 57



ldea: Inspired from idea gas law

- In 1663, Robert Boyle found:
PV = const

where 1 and 1 are fixed. We call this iterative process of doing

control variable experiments as Scientific
-In 1787, Jacques Charles demonstrated

PV Redasoning:
7 = const Step 1. n and 1  are fixed.
where only 7 is fixed. Step 2. only n is fixed.

Step 3. No variable is fixed.
- In 1811, Amedeo Avagadro demonstrated

PV

—— = const
nil

Nan Jiang et al.,, ECML2022; IJCAI 2024; AAAI2024; AAAI2025.
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Design principle of the integrated system

Input: experimental data

Symbolic regression |

—

=
\
\

« Search for optimal equation that
matches the data

. determine the hypothesis and
conduct controlled experiments

Output: best fitted equation

59



Design Principle Scientific Reasoning embedded Symbolic regression

Build the expression from simple to complex, using scientific reasoning,.

. Assumption: need a data oracle that can return the controlled variables data.
P o,
ofolofeolc

Best Expression Tree

Multiple Trial Data

) ©

10.7:-0.33
0.9:0.5 0.1 0.7:-0.26

) o

X| Xy 1 X3 X4 Y

0.6 01:0.8 0.4 0.44
0.4 0.910.8 0.4 0.04
03 02:08 04:016

(a) control x,, x5, X,

0.7 0.4:0.8 0.4 0.40

) o s
D N

X1 Xy X3 Xy Yy

A Ay Az Ay Y

07 0.8 0.110.21-0.09
05 0.4 0.610.2} 0.22

(b) control x5, x4

Nan Jiang et al.,, ECML2022; IJCAI 2024; AAAI2024; AAAI2025.

0.2 0.1 0.9}0.2} 0.16
0.3 0.5 0.1:0.2:-0.07

X1 Xop X3 Xy Y

0.2 0.4 0.2 0.7 -0.24
09 0.3 05 0.5 0.30
05 04 0.8 0.1 0.36

(c) control x,

0.1 0.8 0.7 0.6 -0.41

(d) no control

60



Execution step |

classic symbolic
regression method

Re
-
(\®)
S
o
<
<

|
O
8.
N

0.3:0.5 0.1 0.7
0.650.5 0. 0.75-0.29
0.2:05 0.1 0.7:-0.33
0.9:05 0. 0.75—0.26

Multiple Trial Data

(a) control x,, x5, X,

Nan Jiang et al.,, ECML2022; IJCAI 2024; AAAI2024; AAAI2025.
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Execution step 2

Best Expression Tree
X

Re
-
(\9
S
o
<
<

|
O
8.
N

0.3:0.5 0.1 0.7
0.650.5 0. 0.75-0.29
0.2:05 0.1 0.7!-0.33
0.9:05 0. 0.75—0.26

Multiple Trial Data

X1

0.6 0.1:0.8 0.4' 0.44
0.4 0.910.8 0.4 0.04

(a) control x,, x5, X,

Nan Jiang et al.,, ECML2022; IJCAI 2024; AAAI2024; AAAI2025.

03 0.210.8 0.4' 0.16

(b) control x5, x4

classic symbolic
regression method
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Execution step 3

Best Expression Tree

=
5
5y
&
<

|
O
8.
N

0.3:0.5 0.1 0.7
0.650.5 0. 0.75-0.29
0.2:0.5 0.1 0.7:-0.33
0.9:05 0. 0.75-0.26

Multiple Trial Data

Ao A A3 Xy Y

X| Xp 1 Xz Xy Y

0.6 0.1:0.8 0.4' 0.44
0.4 0.910.8 0.4 0.04

(a) control x,, x5, X,

Nan Jiang et al.,, ECML2022; IJCAI 2024; AAAI2024; AAAI2025.

03 0.210.8 0.4' 0.16

R I I

07 0.8 0.110.21-0.09
05 0.4 0.6:0.2:0.22

(b) control x5, x4

0.2 0.1 0.9:0.2' 0.16
0.3 0.5 0.1:0.2:-0.07

(c) control X,

classic symbolic

regression method
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Execution step 4

Our method works with many existing symbolic
regression methods: like GP, DRL, MCTS, LLM!

Best Expression Tree

Multiple Trial Data

Nan Jiang et al.,, ECML2022; IJCAI 2024; AAAI2024; AAAI2025.

GGQGGG

@GG

0205 0.1 0.7'-0.33

0.910.5 0.1 0.7:-0.26

X1 X9 :.X3 Xgrv Y

B I T SHE

X| Xy v X3 Xy Y

0.6 0.1:0.8 0.4} 0.44
0.4 0.910.8 0.4 0.04

(a) control x,, x5, X,

03 0.2'08 04'0.16

R I I

07 0.8 0.110.21-0.09
05 0.4 06:0.2! 0.22

(b) control x5, x4

02 0.1 0.9'02' 0.16
0.3 0.5 0.1:0.2:-0.07

X1 x2x3x4y|

I s S

0.2 0.4 0.2 0.7 -0.24
09 0.3 05 0.5 0.30
05 04 0.8 0.1 0.36

(c) control X,

0.1 0.8 0.7 0.6 -0.41

(d) no control
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Scientific Reasoning brings an exponential reduction of the search space for a class of
equations

There exists a family of symbolic expression ¢ of (4m — 1) nodes,

One example: (x| + X,) (3 + Xy)... (%, _1 + X,,,.).

. Classic symbolic regression following the simple to complex search order has
to explore a search space whose size is O(¢") to find the expression.

. Our scientific reasoning following the simple to complex order expands O(11) search
spaces.

Nan Jiang et al.,, ECML2022; IJCAI 2024; AAAI2024; AAAI2025.
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Experiments on large-scale algebraic equation dataset

Benchmark on Normalized Mean-squared error metric.

Total variables

Methods 10 20 30 40 50
Monte Carlo Tree Search 0.386, 0.554| 0.554| 0.714, 0.815
Genetic Programming 0.159 0.172] 0.218| 0.229| 0.517
Deep RL with risk-seeking policy gradient 0.284 0.521 0.522| 0.664 0.719
Deep RL with vanilla policy gradient 0415 0.695 0.726] 0.726| 0.779
Deep RL with priority queue training 0384 0488 0615
Our method IE-06] 1E-06 1E-06] 0.002] 0.02]

Our method successfully scales up to dataset with 50 variable due to scientific reasoning.

Nan Jiang et al.,, ECML2022; IJCAI 2024; AAAI2024; AAAI2025. 66



Use scientific reasoning to find the governing PDE for nano voids

Nanovoid evolution video The growth and movement of nanoscale voids
tiny cavities) in copper.

. w5 15.4
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e ———— - ‘l' —— e ————— ’ Tl | | 37, | 25( w22 (5.9) ¥26 (4.4) V} (19.8)
(' ‘ g o ' i
‘ Reasonlng the govermng PDE jl 8 s | QTR 82
‘\\;v’ - . - _ //‘/" : | 35 . ' 3 Vo
\l' i Rl = (16.3) S8 (}241} (6.1)
oc, 1 0F . y24 (4.9)
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ot o (nasim et al,, Journal of Nuclear Materials 2022).

—————

Nan Jiang, Nasim Md, Yexiang Xue. Vertical Al-driven Scientific Discovery. Poster at 1st Science Understanding through Data Science Conference 2024. 67



Takeaway

The benefits are:

« Formal guarantee on Constraint
satisfaction.

Automated Reasoning
Solvers

» Scalablilty: Accelerate learning for
higher-dimensional data.

r — —

feasible output
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Qutline

Verifiability:
Reasoning with learning to ensure constraint satisfaction for structured prediction.

Scalability:
Reasoning with learning to accelerate scientific discovery.

Future work
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Thrust 1: Embed Reasoning in learning for accelerating scientific
discovery
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Discover knowledge for extensive scientific problems, like:
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+ Spinnodal decomposition, like oil and . Dendritic solidification, like the growth of
water mixes. snow flake.

/

What is the governing dynamics in those physical phenomena?
d
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Thrust 2 & 3: Formal Reasoning for Large Language Model

Combine intuitive and informal language description with formal
reasoning (symbolic proofs, rule-based derivations) for verifiable
and accurate prediction.

How to solve hard mathematical problems
with large language model and symbolic
solvers?

2d geometry problems

/1



Thrust 2 & 3: Formal Reasoning for Large Language Model

Combine intuitive and informal language description with formal
reasoning (symbolic proofs, rule-based derivations) for verifiable
and accurate prediction.

Let ABCDEF GH be a cube of side length 5, as shown. Let P and Q be points on AB and AE ,

respectively, such that AP = 2 and AQ = 1. The plane through C, P, and Q intersects DH at R.

H

How to solve hard mathematical problems
R with large language model and symbolic
solvers?

3d geometry problems
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Thrust 2 & 3: Formal Reasoning for Large Language Model

Combine intuitive and informal language description with formal
reasoning (symbolic proofs, rule-based derivations) for verifiable
and accurate prediction.

2 theorem and_commutative (p q : Prop) : pA Q- QA Pp :=
3 assume hpg : p A q, .
4 have hp : p, from and.left hpa, How to solve hard mathematical problems
5 have hg : g, from and.right hpg, \ with large language model and symbolic
6 show q A p, from and.intro hg hp
\/ solvers?

THEOREM PROVER

Theorem proving problems
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Thrust 2 & 3: Formal Reasoning for Large Language Model

Combine intuitive and informal language description with formal
reasoning (symbolic proofs, rule-based derivations) for verifiable

and accurate prediction.

Problem Generated Code Test Cases
H-Index def h index(counts): Input:
n = lOH(COUﬂtS) [134a1,4a23133,5,6]

Given a list of citations counts,
where each citation is a
nonnegative integer, write a
function h_index that outputs

the h-index. The h-index is the
largest number 4 such that 4
papers have each least /4 citations.

Example:
Input: [3,0,6,1,4]
Output: 3

if n > 0:
counts.sort()
counts.reverse()

h =0
while (h < n and
counts[h]-1>=h):
h += 1
return h

else:

return 0

Generated Code Output:
4

Input:
[1000,500,500,250,100,
100,100,100,100,75,50,
30,20,15,15,10,5,2,1]

Generated Code Output:
15

v

v

What is the code implementation with a
given text description of task? like

« competitive programming,
. efficient low-level execution code.
« Automatic program repair

« Automatic testing function generation
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