PALM: Probabilistic Area Loss Minimization for Protein Sequence Alignment

Fan Ding ${ }^{\text {a }}$, Nan Jiang ${ }^{\text {a }}$, Jianzhu Ma, Jian Peng, Jinbo Xu and Yexiang Xue \{ding274, jiang631, yexiang\}@purdue.edu, majianzhu@pku.edu.cn, jianpeng@illinois.edu, jinboxu@gmail.com

[^0]© End-to-End style learning for aligning proteins without the repeated workload.
© The algorithm can do robust learning to reduce the noises in the Biological dataset.
© The developed algorithm can help to find new proteins and drug discovery.

Pairwise Protein Alignment Problem

Given a sequence pair $(S, T), S=S L A, T=L R P$ and $a=\left[I_{S}, I_{T}, M, I_{T}, I_{S}\right]$.

1. Symbols M, I_{S} and I_{T} : represent a match, an insertion in S, and an insertion in T, respectively.
2. Alignment a : a sequential symbols M, I_{S} and I_{T}.

Figure: Alignment Matrix of sequence pair (S, T).

Alignment Sequence as Path

Given a sequence pair $(S, T), S=S L A$ and $T=L R P$. $a=\left[I_{S},\right]$

Insert at S

alignment a

path

Figure: Alignment Matrix of sequence pair (S, T).

Alignment Sequence as Path

Given a sequence pair $(S, T), S=S L A$ and $T=L R P$. $a=\left[I_{S}, I_{T}\right]$

 alignment a

Figure: Alignment Matrix of sequence pair (S, T).

Alignment Sequence as Path

Given a sequence pair $(S, T), S=S L A$ and $T=L R P$. $a=\left[I_{S}, I_{T}, M\right]$

alignment a

path

Figure: Alignment Matrix of sequence pair (S, T).

Alignment Sequence as Path

Given a sequence pair $(S, T), S=S L A$ and $T=L R P$. $a=\left[I_{S}, I_{T}, M, I_{T}\right]$

Figure: Alignment Matrix of sequence pair (S, T).

Alignment Sequence as Path

Given a sequence pair $(S, T), S=S L A$ and $T=L R P$. $a=\left[I_{S}, I_{T}, M, I_{T}, I_{S}\right]$

Figure: Alignment Matrix of sequence pair (S, T).

Pairwise Protein Alignment Problem

Given a sequence pair $(S, T), S=S L A, T=L R P$ and $a=\left[I_{S}, I_{T}, M, I_{T}, I_{S}\right]$. We need $\operatorname{Pr}_{\theta}(a \mid S, T)$: the probability of alignment a with parameter θ.

Figure: Alignment Matrix of sequence pair (S, T).

Our main tasks

© Learning. Given a training set $\left\{S, T, a^{*}\right\}$, we learn

$$
\max _{\theta} P r_{\theta}\left(a^{*} \mid S, T\right)
$$

© Inference. Given two new sequence S^{\prime}, T^{\prime}, predict the most likely alignment \hat{a} :

$$
\hat{a}=\arg \max _{a \in A} \operatorname{Pr}\left(a \mid S^{\prime}, T^{\prime}\right)
$$

Our Observations

© Biology datasets contain notable errors and alignment offsets from the real experiments.
© Existing approaches are not robust. Because they minimize of the pointwise differences of the two alignments.
© We consider a metric over the area of two alignments.

Example for falling of pointwise loss

$$
\begin{aligned}
& \text { origin L R P }
\end{aligned}
$$

$$
\begin{aligned}
& \mathcal{L}_{\text {pooint }}\left({\text { gt, } \left.\text { pred }_{1}\right)}\right)=4 / 5
\end{aligned}
$$

Figure: Point-wise loss between ground-truth and pred $_{1}$.

$$
\begin{aligned}
& \text { origin L } \quad \mathrm{P} \quad \mathrm{P}
\end{aligned}
$$

$$
\begin{aligned}
& \mathcal{L}_{\text {point }}\left(\text { gt, } \text { pred }_{2}\right)=4 / 5
\end{aligned}
$$

Figure: Point-wise loss between ground-truth and pred_{2}.

Example for area loss

$$
\begin{aligned}
& \text { origin L R P } \\
& \begin{array}{cccccccc}
\text { gt } & \mathrm{S}: & \mathrm{S} & - & \mathrm{L} & \overline{\mathrm{P}} & \mathrm{~A} & \mathrm{~S} \\
& \mathrm{~T}: & - & \mathrm{L} & \mathrm{R} & \\
\text { pred }_{1} & \mathrm{~S}: & \mathrm{S} & \mathrm{~L} & - & \mathrm{A} & & \\
& \mathrm{~T}: & - & \mathrm{L} & \mathrm{R} & \mathrm{P} & &
\end{array} \\
& \mathcal{L}_{\text {area }}\left(g t, \text { pred }_{1}\right)=3 / 2
\end{aligned}
$$

Figure: Area loss between ground-truth and pred ${ }_{1}$.

Example for area loss

$$
\begin{aligned}
& \text { origin L } \quad R \quad P
\end{aligned}
$$

Figure: Area loss between ground-truth and pred $_{2}$.

Probabilistic Area Distance via MRF I

Our original goal is to :

$$
\max _{\theta} P r_{\theta}\left(a^{*} \mid S, T\right)
$$

With the integration of area loss, we extend to:

$$
\begin{equation*}
\max \operatorname{Pr}\left(a^{*} \mid S, T\right)=\max \sum_{a} \operatorname{Pr} r_{a r e a}\left(a^{*} \mid a, S, T\right) \operatorname{Pr} r_{\theta}(a \mid S, T) . \tag{1}
\end{equation*}
$$

which sums over the latent variable a.
© Learning efficiency concern: sums over latent alignments $a \in \mathscr{A}$ is exponential complex;

We use the lower bound

$$
\begin{align*}
\hat{a} & =\arg \max _{a \in A} \operatorname{Pr} r_{\text {area }}\left(a^{*} \mid a, S, T\right) \operatorname{Pr} r_{\theta}(a \mid S, T) \tag{2}\\
\operatorname{Pr}_{L B}\left(a^{*} \mid S, T\right) & \approx \operatorname{Pr}_{\text {area }}\left(a^{*} \mid \hat{a}, S, T\right) \operatorname{Pr}_{\theta}(\hat{a} \mid S, T) . \tag{3}
\end{align*}
$$

because of the principle of log-sum-exp function: summation usually dominated by one alignment.

Overview

Training:

1. get sample $\{S, T, a\}$.
2. compute $\operatorname{Pr}_{L B}\left(a^{*} \mid S, T\right)$.
3. sample alignments for computing gradients (see details in paper).
4. repeat 1-3 training until converge.

Testing:

1. given S^{\prime}, T^{\prime}, predict \hat{a} by:

$$
\arg \max _{a \in \mathscr{A}} \operatorname{Pr}\left(a \mid S^{\prime}, T^{\prime}\right)
$$

Precision, Recall and F1-Score Benchmark

1. Sequence S length is between $[1,100]$; Sequence T length is between $[100,200]$;
2. "exact": only an exactly matched alignment is used for computing the true positive rate.

	$\|S\| \in[1,100],\|T\| \in[100,200]$		
	Precision (\%)	Recall (\%)	F1-Score (\%)
	exact	exact	exact
DP	7.8	20.4	11.3
PALM	$\mathbf{9 . 9}$	$\mathbf{2 3 . 5}$	$\mathbf{1 3 . 9}$

Table: PALM gets better results especially on longer sequences and remote homologies than the competing approach.

Precision, Recall and F1-Score Benchmark

1. "4-offset" scenario is a relaxed measure that 4-position off the exact match is allowed.
2. "10-offset" case is relaxed measure with 10-position off.

	$\|S\| \in[1,100],\|T\| \in[100,200]$				
	Precision (\%)	Recall (\%)	F1-Score (\%)		
	exact 4off 10off	exact 4off 10off	exact 4off 10off		
DP	$7.8 \mathbf{3 1 . 3}$	$\mathbf{5 1 . 2}$	20.439 .0	56.3	11.3
PALM	$\mathbf{9 . 9}$	29.8	48.7	$\mathbf{2 3 . 5}$	$\mathbf{4 3 . 1} \mathbf{6 2 . 3}$

Table: PALM gets better results on related measurements with " 4 -offset" and " 10 -offset".

Precision, Recall and F1-Score Benchmark

Table: PALM result for two testing sets with different lengths.

Conclusion

© We propose robust method for reducing the biological errors and offsets for Protein Alignment.
© We derive efficient dynamic sampling algorithm for model training.
© We demonstrate superior performance against competing approach over Precision/Recall/F1-score.

Q \& A

[^0]: ${ }^{\text {a }}$ These authors contribute equally.

