PALM: Probabilistic Area Loss Minimization for Protein Sequence Alignment

Fan Ding^a, Nan Jiang^a, Jianzhu Ma, Jian Peng, Jinbo Xu and Yexiang Xue {ding274, jiang631, yexiang}@purdue.edu, majianzhu@pku.edu.cn, jianpeng@illinois.edu, jinboxu@gmail.com

^aThese authors contribute equally.

- $\odot\,$ End-to-End style learning for aligning proteins without the repeated workload.
- The algorithm can do robust learning to reduce the noises in the Biological dataset.
- ◎ The developed algorithm can help to find new proteins and drug discovery.

Pairwise Protein Alignment Problem

Given a sequence pair (S, T), S = SLA, T = LRP and $a = [I_S, I_T, M, I_T, I_S]$.

- 1. Symbols M, I_S and I_T : represent a match, an insertion in S, and an insertion in T, respectively.
- 2. Alignment a: a sequential symbols M, I_S and I_T .

Figure: Alignment Matrix of sequence pair (S, T).

Given a sequence pair (S, T), S = SLA and T = LRP. $a = [I_S,]$ R Ρ Insert at S S S: T: convert A alignment a path

Figure: Alignment Matrix of sequence pair (S, T).

Given a sequence pair (S, T), S = SLA and T = LRP. $a = [I_S, I_T]$

Figure: Alignment Matrix of sequence pair (S, T).

Given a sequence pair (S, T), S = SLA and T = LRP. $a = [I_S, I_T, M]$

Figure: Alignment Matrix of sequence pair (S, T).

Given a sequence pair (S, T), S = SLA and T = LRP. $a = [I_S, I_T, M, I_T]$

Figure: Alignment Matrix of sequence pair (S, T).

Given a sequence pair (S, T), S = SLA and T = LRP.

 $a = [I_S, I_T, M, I_T, I_S]$

Figure: Alignment Matrix of sequence pair (S, T).

Pairwise Protein Alignment Problem

Given a sequence pair (S, T), S = SLA, T = LRP and $a = [I_S, I_T, M, I_T, I_S]$.

We need $Pr_{\theta}(a|S,T)$: the probability of alignment *a* with parameter θ .

Figure: Alignment Matrix of sequence pair (S, T).

 \odot Learning. Given a training set $\{S,T,a^*\},$ we learn

 $\max_{\theta} Pr_{\theta}\left(a^*|S,T\right)$

 \odot Inference. Given two new sequence S', T', predict the most likely alignment \hat{a} :

$$\hat{a} = \arg \max_{a \in \mathcal{A}} Pr(a|S',T')$$

- Biology datasets contain notable errors and alignment offsets from the real experiments.
- Existing approaches are not robust. Because they minimize of the pointwise differences of the two alignments.
- \odot We consider a metric over the area of two alignments.

Example for falling of pointwise loss

$$\mathcal{L}_{point} (gt, pred_1) = 4/5$$

Figure: Point-wise loss between ground-truth and $pred_1$.

Example for falling of pointwise loss

Figure: Point-wise loss between ground-truth and pred₂.

Example for area loss

$$\mathcal{L}_{area}\left(gt, pred_{1}
ight)=\left.3\left.
ight|\left.2
ight.$$

Figure: Area loss between ground-truth and $pred_1$.

 $\mathcal{L}_{area}(gt, pred_2) = 4 + 1/2$

Figure: Area loss between ground-truth and pred₂.

Our original goal is to :

$$\max_{\theta} Pr_{\theta}\left(a^*|S,T\right)$$

With the integration of area loss, we extend to:

$$\max Pr(a^*|S,T) = \max \sum_{a} Pr_{area}(a^*|a,S,T)Pr_{\theta}(a|S,T).$$
(1)

which sums over the latent variable a.

\odot Learning efficiency concern: sums over latent alignments $a \in \mathcal{A}$ is exponential complex;

We use the lower bound

$$\hat{a} = \arg\max_{a \in \mathcal{A}} Pr_{area}(a^*|a, S, T) Pr_{\theta}(a|S, T)$$
(2)

$$Pr_{LB}(a^*|S,T) \approx Pr_{area}(a^*|\hat{a},S,T)Pr_{\theta}(\hat{a}|S,T).$$
(3)

because of the principle of log-sum-exp function: summation usually dominated by one alignment.

Training:

- 1. get sample $\{S,T,a\}.$
- 2. compute $Pr_{LB}(a^*|S,T)$.
- 3. sample alignments for computing gradients (see details in paper).
- 4. repeat 1-3 training until converge.

Testing:

1. given S', T', predict \hat{a} by: $\arg \max_{a \in \mathcal{A}} Pr(a|S', T')$

Precision, Recall and F1-Score Benchmark

- 1. Sequence S length is between [1, 100]; Sequence T length is between [100, 200];
- 2. "exact": only an exactly matched alignment is used for computing the true positive rate.

	$ S \in [1, 100], T \in [100, 200]$					
	Precision $(\%)$	Recall $(\%)$	F1-Score (%)			
	exact	exact	exact			
DP	7.8	20.4	11.3			
PALM	9.9	23.5	13.9			

Table: PALM gets better results especially on longer sequences and remote homologies than the competing approach.

Precision, Recall and F1-Score Benchmark

- 1. "4-offset" scenario is a relaxed measure that 4-position off the exact match is allowed.
- 2. "10-offset" case is relaxed measure with 10-position off.

	$ S \in [1, 100], T \in [100, 200]$					
	Precision $(\%)$	Recall $(\%)$	F1-Score (%)			
	exact 4 off 10 off	exact 4 off 10 off	exact 4 off 10 off			
DP	7.8 31.3 51.2	$20.4 \ 39.0 \ 56.3$	$11.3 \ 34.7 \ 53.6$			
PALM	9.9 29.8 48.7	$23.5\ 43.1\ 62.3$	$13.9 \ 35.2 \ 54.7$			

Table: PALM gets better results on related measurements with "4-offset" and "10-offset".

	$ S \in [1, 100], T \in [100, 200]$			$ S \in [100, 200], T \in [1, 100]$						
	Precision (%)	Recall $(\%)$	F1-Score $(\%)$	Precision (%)	Recall (%)	F1-Score $(\%)$				
	exact 4-off 10-off	exact 4-off 10-off	exact 4-off 10-off	exact 4-off 10-off	exact 4-off 10-off	exact 4-off 10-off				
DP	7.8 31.3 51.2	$20.4 \ 39.0 \ 56.3$	$11.3 \ 34.7 \ 53.6$	$20.2 \ 40.4 \ 59.4$	$6.1 \ 26.3 \ 45.1$	$9.4 \ 31.9 \ 51.3$				
PALM	9.9 29.8 48.7	$23.5\ 43.1\ 62.3$	$13.9 \ 35.2 \ 54.7$	$26.8\ 44.6\ 63.2$	$6.4 \ 26.6 \ 43.1$	$10.3 \ 33.3 \ 51.2$				
	$ S \in [100, 200], T \in [400, +\infty)$			$ S \in [400, +\infty), T \in [100, 200]$						
	Precision (%)	Recall $(\%)$	F1-Score $(\%)$	Precision (%)	Recall $(\%)$	F1-Score $(\%)$				
	exact 4-off 10-off	exact 4-off 10-off	exact 4-off 10-off	exact 4-off 10-off	exact 4-off 10-off	exact 4-off 10-off				
DP	4.9 24.1 41.0	$33.4 \ 38.1 \ 42.6$	$8.5 \ 29.5 \ 41.8$	34.9 39.9 44.6	2.8 14.4 24.8	$5.2\ 21.2\ 31.9$				
PALM	$6.1 \ 23.4 \ 38.3$	$61.1 \ 69.0 \ 76.5$	$11.1 \ 34.9 \ 51.0$	$62.5 \ 71.0 \ 78.8$	$3.2 \ 14.1 \ 23.6$	$6.1 \ 23.5 \ 36.3$				

Table: PALM result for two testing sets with different lengths.

- We propose robust method for reducing the biological errors and offsets for Protein Alignment.
- We derive efficient dynamic sampling algorithm for model training.
- We demonstrate superior performance against competing approach over Precision/Recall/F1-score.

