
A Fast Randomized Algorithm for Massive
Text Normalization

Nan Jiang, Chen Luo, Vihan Lakshman, Yesh Dattatreya, Yexiang Xue

Purdue University, Amazon Search

Lexical Normalization

It is the process of transferring

} non-standard
} informal
} misspelled tokens

into their standardized counterparts as well as converting

} words of various tenses
} pluralization

into a consistent representation.

1

Figure: Two common scenarios where people make typos. (left) typing on phone. (right)
search on web.

2

Current Bottlenecks

1. Mobile computing, Social networks, Web search contain huge amount of
typos.

2. At the first step of deep learning models, typos will be all mapped to [UNK].
3. Human annotation is expensive.
4. Existing methods are slow for massive dataset.

Our Contribution:

1. is adaptive to diverse domains;
2. does not require annotation or supervised training;
3. is faster by using LSH to quickly compute the similarity for words;

3

Morphological1 Similarity in Linguistics

If two words share the a lot of subwords, then they are likely to be the same words.

Examples:

amazingg, amazinggg, mazing, mazinggg,amazinggggg, amazinggggggg,

amazinggggggggggg, amazingggggggggg, mazingggg, amazinggggggggg,

soamazing, amazings, amazingggggg

good, goose, noose

1Morphology analyzes the structure of words: prefixes, stems and suffixes.
4

The architecture of the proposed algorithm

(1) split into subwords
{goo, oo0, o0d}

(5) borrowing value
randomly from neighbors.

(4) get minimum in every bin

{2, 23, 28} 2 23 23

(b) Stabilize by weighted cliques

good

goo0d

gooood

infant

infantt

iifant

ginfant

2 23 5

good

…

…5
goo0se

goose

…

…

noose ……

Vocabulary Lexical corrections
good
noose
infant
goose

goo0d, gooood

(c) vocabulary with lexical correction

(d) inference unseen word ‘goo0se’(a) Densified MinHash for word ‘goo0d’

...… …

(2) Hash subwords into
discrete integers

input: goo0d

(3) put hashed value into bins

23，282 5

(6) hash the array recursively
into one single signature.

5 …

5 …

infantt, iifant, ginfant

2

2Densified MinHash is a most recently proposed LSH algorithm.
5

Remarks

The defects

For million words of input, the probability for event "a non-relevant word is
collided with a group of similar words" become large.

Our solution

We repeat the LSH for) times, and remove those edges with low weight.

6

Experiments

Examples from Twitter Dataset

Representative Similar words

there thereâ, therea, ithere, therer

night gnight, nightï, nightâ, gnightâ, dnight, nighti

friends friend, friendsss, friendz, friendss, friendzz, friendsssss, myfriends,
friendssss, vfriends, myfriend, friendâ, friend1

feeling feelin, feelingz, feelingg, feelinga, feelinf, feelinfg

morning mornings, gmorning, morningg, gmornin, morningss, morningo, gmorningg
, smorning, morningstar, morningâ, morningon

8

Empirical Running Time Comparison

Datasets Methods Indexing (Mins) Inference (Mins)Single Multi

Twitter

Flan (
 = 0.2) 40• 3• 18•
Hunspell [1] 171 16 49

Autocorrect[2] 510 41 154
FAISS-Glove 408 25 83

FAISS-Fasttext 44 6 29

Reddit

Flan (
 = 0.2) 59• 12• 26•
Hunspell [1] 520 46 71

Autocorrect[2] 731 93 221
FAISS-Glove 514 29 101

FAISS-Fasttext 70 19 42

Twitter sentiment140: 1.6 million tweets; 0.7 million distinct words.

Reddit: 10 million sentences; 2.7 million unique words.
9

Quality of Correction Comparison

We send the corrected results of 100 sentences to AmazonMturk for human
evaluation.

Datasets Methods Precision Recall F1-Score

Twitter

Flan 60.45% 41.76%• 49.39%•
Hunspell[1] 37.93% 35.71% 36.79%

Autocorrect[2] 51.79% 28.57% 36.83%
faiss-Glove 71.43%• 9.34% 16.52%

faiss-Fasttext 65.28% 24.18% 35.28%

Reddit

Flan 84.85%• 34.33%• 48.88%•
Hunspell [1] 42.53% 34.33%• 37.99%

Autocrrect [2] 66.00% 32.84% 43.85%
faiss-Glove 63.64% 17.16% 27.04%

faiss-Fasttext 75.71% 22.39% 34.56%

Flan get good Recall and F1-scores compared with the baselines.
10

Impact to Downstream Applications - Perturbed GLUE benchmark

Subtask Noise Metrics No corr. Ours Autocorrect Hunspell Glove Fasttext

MRPC 20%
Acc. 78.67 78.92• 78.92• 74.26 78.18 78.18
F1 84.26 84.83 84.07 82.98 84.89• 84.83

MRPC 40%
Acc. 76.22 77.94• 77.69 74.51 77.43 77.69
F1 84.24 85.09• 84.17 83.38 84.71 84.49

MRPC 60%
Acc. 67.89 69.11• 67.11 65.44 67.64 67.89
F1 74.10 78.64• 74.80 72.62 73.60 73.85

11

Impact to Downstream Applications - Twitter Sentiment Classification

Methods Valid Accuracy Test Accuracy
No Corr. 79.40% 79.39%

Flan 79.54%• 79.62%•
Hunspell [1] 79.08% 79.16%

Autocorrect [2] 79.06% 79.18%
FAISS + Glove 79.42% 79.41%

FAISS + Fasttext 79.44% 79.41%

12

References

[1] Leena Al-Hussaini. Experience: Insights into the benchmarking data of
hunspell and aspell spell checkers. ACM J. Data Inf. Qual., 8(3-4):13:1–13:10,
2017.

[2] Peter Norvig. Natural language corpus data. Beautiful data, pages 219–242,
2009.

13

Q & A

	Experiments
	References

